Modelling Double-Riser Fluid Catalytic Cracking Units

Lante Carbognani, M.Sc., P.Eng. VMG, A Schlumberger Technology

Background

Fluid Catalytic Cracking (FCC) is a key process in refineries as it cracks high molecular weight hydrocarbons in the presence of a catalyst and heat, producing gasoline and lighter, higher-value fluids. To add to the importance of this unit, recent forecasts for gasoline and other fuels indicate that the FCC will remain one of the most important heavy oil conversion units in the refining industry [1].

On the oil availability and quality side, unconventional oil has been playing an increasingly important role in world oil supply. This translates to a gradual quality decrease in the feed to the different units in a refinery [2]. To answer these changes, FCC technologies are constantly pushing the boundaries, developing more efficient and flexible units such as the RFCC (Residue FCC) and more recently a "Two riser FCC" configuration. This last process was developed to be flexible enough to be operated in different modes depending on market demands. [3]

Summary

The Symmetry* Process Software platform allows for fully rigorous double riser configuration (see Figure 1) for both FCC and Residue FCC (RFCC) configurations, allowing you to:

- Predict the reactivity of feeds & blends
- Save time and resources on simulation
- Optimize the reactor's operating conditions considering:
 - Catalyst deactivation
 - Mechanical considerations
 - o Chemical additive interactions
 - o Pretreatment unit performance

😂 Symmetry

✓ Riser Geometry		
Riser	1	2
Riser Top Height [m]	3.00	4.00
Riser Top Diameter [m]	0.65	0.65
Riser Mid Height [m]	2.00	3.00
Riser Mid Diameter [m]	0.60	0.60
Riser Bottom Height [m]	2.00	2.00
Riser Bottom Diameter [m]	0.50	0.50
Catalyst Recirculation [kg/h]	0.00	0.00
Catalyst Circulation Rate [kg/h]	447285.45	566266.72
Risers Outlet T [C]	510.0	515.0
✓ Riser Results		
Riser	1	2
Riser Conversion [%]	1 51.35	2 74.08
Riser Conversion [%] Riser Inlet T [C]	1 51.35 534.9	2 74.08 566.0
Riser Conversion [%] Riser Inlet T [C] Risers Outlet P [kPa]	1 51.35 534.9 287.68	2 74.08 566.0 276.81
Riser Conversion [%] Riser Inlet T [C] Risers Outlet P [kPa] Riser DP [kPa]	1 51.35 534.9 287.68 12.32099	2 74.08 566.0 276.81 23.19181
Riser Conversion [%] Riser Inlet T [C] Risers Outlet P [kPa] Riser DP [kPa] Bed Void [Fraction]	1 51.35 534.9 287.68 12.32099 0.9604	2 74.08 566.0 276.81 23.19181 0.9299
Riser Conversion [%] Riser Inlet T [C] Risers Outlet P [kPa] Riser DP [kPa] Bed Void [Fraction] WHSV [1/h]	1 51.35 534.9 287.68 12.32099 0.9604 18617.98	2 74.08 566.0 276.81 23.19181 0.9299 24709.75
Riser Conversion [%] Riser Inlet T [C] Risers Outlet P [kPa] Riser DP [kPa] Bed Void [Fraction] WHSV [1/h] Gas Residence Time [s]	1 51.35 534.9 287.68 12.32099 0.9604 18617.98 0.4723	2 74.08 566.0 276.81 23.19181 0.9299 24709.75 0.3864

Figure 1. Symmetry's Double Riser FCC

Double-Riser FCC in Symmetry

Symmetry's FCC unit previously only supported a "One riser" conventional FCC with both single and two-stage regeneration available (see Figure 2).

However, in order to keep up with constantly changing technologies, an effort to develop a doubleriser feature for the FCC was completed in 2020.

This new additional configuration allows the user to model two independent risers, where effluents are stripped off the catalyst on a common stripping section similar to that reported by Wang et.al.[4] (see Figure 3). The catalyst is subsequently regenerated in either a single or a two-stage regenerator (see Figure 2).

Figure 2. FCC Possible Configurations

Schlumberger

Figure 3. Double riser schematic [4]

Double Riser Features

When selecting the double riser option, a series of features and differences between single and double riser FCC units can be noted.

Mainly, this option allows the user to specify two different riser sections with different feeds, dispersion steam and quench:

- Single Diameter
 - Additional Feed port
 - Additional Dispersion port
- Multi-Diameter
 - Additional Feed port
 - Additional Dispersion port
 - o Additional Quench port

In the Summary tab, the "Additional Riser Results" is now going to reflect the two different catalyst to oil ratios, one for each riser (see Figure 4):

✓ Additional Riser Results	
Riser	1 2
Catalyst/Oil wt	

Figure 4. Additional riser results

Schlumberger

🖾 Symmetry

Specifying the RON/MON is still possible. The FCC unit operation will find the catalyst circulation rate (thus riser temperature) in order to achieve this specification. The only difference between single and double riser FCC is that when in double riser mode, the overall catalyst circulation rate (and thus outlet temperature) is going to increase/decrease in order to find the desired RON/MON, all while keeping the risers outlet temperatures (ROT) ratio constant. For example:

	Scenario 1	Scenario 2
Spec RON	No	Yes
RON	91	93
ROT1 (Riser 1)	515	520
ROT2 (Riser 2)	518	523.03
ROT1/ROT2	0.9904	0.9904

When working with a double riser FCC, the geometry for each riser can then be specified, including the possibility of multi-diameter risers (see Figure 5):

Figure 5. Double-Riser Geometry inputs

Additionally, profiles for each riser are available in both table & plot format (see Figure 6):

Schlumberger

L) =	/FCC1 (FC	C)						単	_ = ×	₽1 = /	CC1 (FCC)						l l	# ⊨ _	• ×
	Converged Calcul	ations in 1	76 riser iterati	ons, 6 regen	erator iterations with Direct S	olve high uncer	rtainty , All regener	ator sulfur/nitroge	n oxidized	0	nverged Calci	ulations in 176 rise	r iterations. 6 regenerator	iterations with Direct	t Solve high uncer	tainty . All regene	rator sulfur/nitrog	en oxidized	
Name	FCC1								Description ~	Name FCC1								Des	scription ~
> Scher	natic / Connectio	ins								> Schematic	Connections								
Current	Unit Date		al an Daniel	Malala /	Des Class	Natas				Summany	Unit Dotail	Cataluct Data	violde/Sottinge	Profiler Plot	Notor				
Summ	ary onic bec		aiyst Detail	Tielus/a	Fromes From	NOTES				Johning	onit betai	cataljst bet	in Therapy Sectings	TTOMES THE	Hotes				
Riser i	!								-	X Axis	Length		Y Axis	Riser T		•			
Unit P	ofiles																		
	Length R	iser T	Catalyst T	Pressure	Process Velocity Process	Veloc Void	d Fraction Solid	Void Fraction	Conversion	560	These								
	[m] [0	-)	[C]	(kPa)	[m/s] [m/s]	(Fra	iction] [Fract	tion] [96] [540									
0	0.00	314.7	700.0	300.00	5.95	0.9541	0.3891	0.6109	0.00				************						
2	0.20087	554.6	554.6	290.75	16.11	12.50	0.8789	0.1320	10.89	520						**********			-
3	0.30131	552.6	552.6	296.10	17.20	13.46	0.8876	0.1124	15.70	500	1								
4	0.40174	551.0	551.0	294.76	18.14	14.27	0.8940	0.1060	20,21										
5	0.50218	549.7	549.7	293.48	18,99	14,99	0.8991	0.1009	21.22	480									
6	0.60261	548.6	548.6	292.26	19.78	15.65	0.9033	0.0967	22.03										
7	0.70305	547.7	547.7	291.10	20.51	16.24	0.9068	0.0932	22.58	460									
8	0.80349	546.9	546.9	290.00	21.19	16.79	0.9099	0.0901	23.47	0 440	(l						
9	0.90392	546.2	546.2	288.93	21.83	17.31	0.9126	0.0874	26.94	E									
10	1.00436	545.6	545.6	287.91	22.45	17.79	0.9150	0.0850	29.13	§ 420									
11	1.10479	545.0	545.0	286.91	23.04	18.26	0.9171	0.0829	29.86	LC.									
12	1.20523	544.5	544.5	285.94	23.61	18.70	0.9191	0.0809	30.78	400			1						
13	1.30566	544.0	544.0	285.00	24.16	19.12	0.9209	0.0791	31.80	290									
14	1.4061	543.6	543.6	284.09	24.69	19.53	0.9225	0.0775	33.97										
15	1.50654	543.2	543.2	283.20	25.20	19.92	0.9240	0.0760	36.17	360									
16	1.60697	542.8	542.8	282.33	25.70	20.30	0.9254	0.0746	36.84										
17	1.70741	542.5	542.5	281.48	26.18	20.66	0.9268	0.0732	37.74	340									
18	1.80784	542.2	542.2	280.64	26.65	21.01	0.9280	0.0720	38.85	320									
19	1.90828	541.9	541.9	279.83	27.11	21.35	0.9291	0.0709	39.38	020									
20	2.04124	529.9	529.9	279.51	14.77	12.07	0.9491	0.0509	39.05	300		+	+ , , ,		+ -	+			-
22	2.13402	529.0	525,4	279.51	20.95	14.00	0.9519	0.0461	40.16)	1	2 3	4	5	6	7 8		9
22	2 21050	529.0	529.0	279.50	20.95	19.55	0.9550	0.0462	40.04					Length [m					
24	2,41237	528.3	528.3	279.49	30.90	22.91	0.9558	0.0442	41.29										
25	2.50515	527.9	527.9	279.49	32.24	23.93	0.9561	0.0439	41.54	Y = 7 2995	V = 465.002								a 1
26	2.59794	527.6	527.6	278.27	32.54	24.13	0.9565	0.0435	41.94 ~	X = 7.5003									
<					July 4				>										
		_										_							
Recom	mended Regres	sion					Activate	Reduced Order N	rodel 🔄 Ignored	Recommend	ed Regressio	n				Acti	vate Reduced Or	der Model	ignored

Figure 6. Double Riser Profiles & Plots

How to Add a Double-Riser FCC

The FCC double riser feature can be accessed in two ways:

1. By dragging and dropping the new "FCC 2R" stencil directly into the flowsheet (see Figure 7):

Figure 7. Adding an FCC 2R unit

2. By clicking on the "Double Riser" checkbox located in the Unit Detail Tab (see Figure 8):

🕼 🗧 /FCC1 (FCC)						
Converged Calcula	tions in 182 riser itera	ations, 7 regener	ator iterations w	ith Direc	t Solve medium	
Name FCC1						
> Schematic / Connections						
Summary Unit Detail	Catalyst Detail	Yields/Settin	gs Profiles	Plot	Notes	
✓ Riser Detail		✓ Stripper	Detail			
Name	Name	Name > Value				
Multi Diameter Riser		Disengagem	ent Volume [m3]	0.000	
Double Riser		Stripper Hei	Stripper Height [m]			
Symmetrical Riser Units	1 Stripper Dia	Stripper Diameter [m]				
V Piser Coometry		Stripper Stea	Stripper Steam Rate [kg/h] 3			
* Riser Geometry		Stripper Stea	am T [C]		526.7	
Riser Height [m]	7.00	Strinner Ster	am P [kPa]		308.00	

Figure 8. Switching between single and double riser

References

[1] Shan, Hong-hong, et al. "Experimental study of two-stage riser FCC reactions." Fuel 80.8 (2001): 1179-1185.

[2] WEO, IEA. "International Energy Agency, World Energy Outlook 2012." Paris Google Scholar (2012).

[3] Zhang, Jinhong, et al. "Multifunctional two-stage riser fluid catalytic cracking process." Applied petrochemical research 4.4 (2014): 395-400.

[4] Wang, Gang, Chunming Xu, and Jinsen Gao. "Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production." Fuel Processing Technology" 89.9 (2008): 864-873.

To learn more about the Symmetry Process Software Platform please contact your local Schlumberger office.

*Mark of Schlumberger

Schlumberger

