Herbert Loria, Ph.D., P.Eng, Sandra Rodriguez, B.A.Sc., M.Sc. VMG, A Schlumberger Technology

## Introduction

Heavy oils are rich in asphaltenes; the heaviest and most polar fraction of a crude oil. Asphaltenes are generally defined as a solubility class of materials that are insoluble in nalkanes like n-pentane or n-heptane but soluble in aromatics solvents such as toluene.

Asphaltenes can precipitate along the whole oil production process due to changes in temperature, pressure and composition causing operational problems. During oil production, asphaltenes can block the porous channels of the reservoir rock making oil mobility very difficult. In the transportation process, the asphaltene precipitation makes pumping challenging due to a viscosity increment and at the surface, the oil needs to be blended with diluents to lower its viscosity. In refinery operations asphaltenes can plug refinery equipment increasing the frequency of maintenance intervention procedures.

One of the historical challenges in phase behavior simulation is the prediction of the conditions at which asphaltene precipitation occurs, the amount of precipitate, and the properties of the asphaltene-rich phase. To address these issues, the Symmetry process platform has recently added the **Asphaltene Precipitation for Live Oils** to the list of characterization options available in the Oil Source unit operation, this option is backed up by the Symmetry process platform's own PIONA Molecular based characterization procedure [1].

The characterization is complemented with Asphaltene Onset Pressure and Asphaltene precipitated fraction calculations at given conditions. The calculations can help in the monitoring process of asphaltene precipitation in a flowsheet.

The objective of this communication is to offer a walkthrough of the characterization process of a live oil that contains asphaltenes that may precipitate during oil production and, to highlight tools available in the Symmetry process platform to monitor and detect precipitated asphaltenes. This will be done with the help of an example based on a reservoir fluid described in open literature.

## **Asphaltene Precipitation for Live Oils**

To start the characterization of a live oil or reservoir fluid with asphaltene content, we need the following data set: light ends analysis and Stock Tank properties (SARA distribution in wt %, Oil density, molecular weight (optional) and Gas to Oil ratio). These properties are enough to obtain asphaltene precipitation calculations since they provide the basis of internal correlations that arrange the PIONA slate components in a way that flash calculations can produce an asphaltene-like phase.

If experimental Saturation and Asphaltene Onset Pressures are available, they can be used to tune parameters and match calculated phase boundary pressures.

Gonzalez et al. [2] studied the asphaltene precipitation phase behavior of live oil samples, the following tables show the reported characterization data for one of them that include: stock tank oil properties, light ends analysis, and phase boundaries conditions. This reservoir fluid will be used to exemplify the characterization and tuning procedure for asphaltene precipitation.



| STOCK TANK OIL PROPERTIES |        |  |  |  |  |  |  |
|---------------------------|--------|--|--|--|--|--|--|
| Density (kg/m3) at 60F    | 919    |  |  |  |  |  |  |
| GOR (Sm3 / m3)            | 100.63 |  |  |  |  |  |  |
| Saturates (wt%)           | 39.36  |  |  |  |  |  |  |
| Aromatics (wt%)           | 36.04  |  |  |  |  |  |  |
| Resins (wt%)              | 9.04   |  |  |  |  |  |  |
| Asphaltenes (wt%)         | 15.56  |  |  |  |  |  |  |

| Light Ends Composition |        |  |  |  |  |  |  |
|------------------------|--------|--|--|--|--|--|--|
| Component              | Mass % |  |  |  |  |  |  |
| NITROGEN               | 0.078  |  |  |  |  |  |  |
| CARBON DIOXIDE         | 0.058  |  |  |  |  |  |  |
| METHANE                | 4.318  |  |  |  |  |  |  |
| ETHANE                 | 2.005  |  |  |  |  |  |  |
| PROPANE                | 2.266  |  |  |  |  |  |  |
| ISOBUTANE              | 0      |  |  |  |  |  |  |
| n-BUTANE               | 0.537  |  |  |  |  |  |  |
| ISOPENTANE             | 0      |  |  |  |  |  |  |
| n-PENTANE              | 2.066  |  |  |  |  |  |  |

| SATURATION PRESSURES           |       |  |  |  |  |  |  |
|--------------------------------|-------|--|--|--|--|--|--|
| Temperature (°C) Pressure (kPa |       |  |  |  |  |  |  |
| 26.67                          | 11718 |  |  |  |  |  |  |
| 31.11                          | 12063 |  |  |  |  |  |  |
| 37.78                          | 12752 |  |  |  |  |  |  |
| 65.56                          | 14668 |  |  |  |  |  |  |
| 97.78                          | 16681 |  |  |  |  |  |  |

| Asphaltene Onset Pressure    |       |  |  |  |  |  |
|------------------------------|-------|--|--|--|--|--|
| Temperature (°C) Pressure (k |       |  |  |  |  |  |
| 27                           | 59279 |  |  |  |  |  |
| 31.11                        | 55143 |  |  |  |  |  |
| 38                           | 46182 |  |  |  |  |  |
| 65                           | 34809 |  |  |  |  |  |
| 98                           | 31707 |  |  |  |  |  |

As mentioned above, the asphaltene precipitation procedure in the Symmetry process platform is based on components created from it's PIONA Molecular based characterization; a key part in the characterization procedure is the setup of the PIONA components slate. Let's begin the process by opening a new case using the **Advanced Peng-Robinson** property package with the following pure light end components defined in the previous tables:



| Configure Property Package                                           | <b>×</b>          |
|----------------------------------------------------------------------|-------------------|
| VMGThermo         ✓         + Add         ✓         Rename <ul></ul> | icate sign Prop I |
| 9 Compounds 1 Flowsheet 0 Unit Ops                                   |                   |
| Thermodynamic Models Compounds Settings                              |                   |
| Add Compounds                                                        |                   |
| Compound search                                                      |                   |
|                                                                      |                   |
|                                                                      |                   |
| 9 Compounds                                                          |                   |
| NITROGEN                                                             | Sort              |
| CARBON DIOXIDE                                                       |                   |
| METHANE                                                              | Compare           |
| ETHANE                                                               | Clear All         |
| PROPANE                                                              | Crowne M          |
| ISOBUTANE                                                            | Groups +          |
| n-BUTANE                                                             | New Group         |
| ISOPENTANE Q 企 面                                                     |                   |
| n-PENTANE                                                            |                   |
| 🖽 kij                                                                |                   |
| Dimact & Const                                                       | Done              |
|                                                                      | Done              |

Then we can open the **PIONA Slate** environment by clicking on the PIONA button from the previous window. In the PIONA Slate window enter the following values using the *Carbon Number (Cn) Cuts* Slate Style. Note that the *Asphaltene Precipitation* and *Include Aromatics* boxes are checked in order to create an extended list of aromatic and dehydrogenated aromatic components which will represent the Asphaltene–like components. When creating the PIONA Slate, it is recommended to use the Carbon Number (Cn) Cuts Style as this style allows the inclusion of heavy Aromatic and Dehydrogenated aromatic components that can act as asphaltene-like compounds.

| VMGThermo - PIONA                                                                     | Slate              |             |              |              |              |              |
|---------------------------------------------------------------------------------------|--------------------|-------------|--------------|--------------|--------------|--------------|
| Hydrocarbon slate properties have been modified. Ready to create HC hydrocarbon slate |                    |             |              |              |              |              |
| Slate Style O Boiling Point Ran                                                       | nges 🔹 Carbon Nur  | nber (Cn) C | uts 🔿 Blac   | k Oil        | Create Slate | e Delete S   |
| Slate Settings                                                                        |                    | Carbon N    | umber (Cn)   | Cuts         |              |              |
| Slate Name                                                                            | нс                 | Cut         | Initial Cn   | Final Cn     | Initial BP   | Final BP     |
| Carbon Number (Cn) Cuts                                                               |                    |             | _            |              | [C]          | [C]          |
| No. of Cn Cuts                                                                        | 8                  | C6 - C9     | 6            | 9            | 36.6         | 151.3        |
| First Cn Cut                                                                          |                    | C10 - C14   | 10           | 14           | 151.3        | 254.0        |
| Starts at Cn                                                                          | 6                  | C15 - C19   | 15           | 19           | 254.0        | 331.1        |
| 🔺 Last Cn Cut                                                                         |                    | C20 - C29   | 20           | 29           | 331.1        | 441.1        |
| Based on Fluid Type                                                                   | User +             | C30 - C49   | 30           | 49           | 441.1        | 571.1        |
| Starts at Cn                                                                          | 100                | C50 - C74   | 50           | 74           | 571.1        | 678.7        |
| Settings                                                                              |                    | C75 - C99   | 75           | 99           | 678.7        | 754.6        |
| Cut Boiling Points from                                                               | Katz-Firoozabadi 🕶 | C100+       | 100          |              | 754.6        | 808.1        |
| Viscosity Estimation                                                                  | API-VMG +          |             |              |              |              |              |
| HAP's Slate                                                                           |                    | * One Slate | Componen     | t per select | ted PIONA fa | mily will be |
| Asphaltene Precipitation                                                              |                    |             |              |              |              |              |
| Include Aromatics                                                                     |                    |             |              |              |              |              |
| PIONA Inclusion                                                                       | Aromatics Setting  | gs          | Deny. Arc    | omatics sei  | tings        |              |
| Parattins                                                                             | Multipliers        |             | H/C Ratio    |              | 0.6500       |              |
|                                                                                       | _                  |             | r iviultipli | ers          |              |              |
| Naphthonos V                                                                          | -                  |             |              |              |              |              |
| Aromatics                                                                             | -                  |             |              |              |              |              |
| Debydrogenated Aromatics                                                              | -                  |             |              |              |              |              |
|                                                                                       |                    |             |              |              |              |              |
| Atomic Inclusion                                                                      |                    |             |              |              |              |              |
| N Aromatics                                                                           |                    |             |              |              |              |              |
| S Aromatics                                                                           |                    |             |              |              |              |              |
| V Aromatics                                                                           |                    |             |              |              |              |              |
| Ni Aromatics                                                                          |                    |             |              |              |              |              |
| Fe Aromatics                                                                          |                    |             |              |              |              |              |
|                                                                                       |                    |             |              |              |              |              |



The asphaltene-like components are Aromatic and Dehydrogenated Aromatic compounds with large Carbon Numbers (Cn > 100). The equation of state (EOS) binary interaction parameters for these components with other non-asphaltene hydrocarbons have been tuned to allow the precipitation of a heavy hydrocarbon phase rich in asphaltene-like components. The EOS binary interaction parameters have been tuned for the following Symmetry process platform's property packages: Advanced Peng-Robinson, Advanced Peng-Robinson for Natural Gas, Advanced Peng-Robinson for Natural Gas 2 and Refinery-APR.

Once the PIONA Slate window is set up click on the Create Slate button to add the PIONA based components to the property package. Now, we are ready to start the characterization procedure.

Go to the flowsheeting environment, change the Unit Set to *SI* and add an Oil Source unit operation. Open the unit operation and select *Oil / Refinery* as the Application type and check the *Asphaltene Precipitation (Live Oil)* box. Observe that the Cut Ranges option is automatically enabled, this is because the Asphaltene Precipitation characterization will be based on cut ranges that will be defined by the SARA Distribution, light ends composition and the Yield and Density factors from the Settings tab.

| 🛢 🏮 /OilFeed1 (Oil Source                       |                                   |                                                                                                 |               |                       | <b>₩</b>   _               | • ×         |
|-------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|---------------|-----------------------|----------------------------|-------------|
|                                                 |                                   | Missing SARA Distrib                                                                            | ution         |                       |                            |             |
| Name OilFeed1                                   |                                   |                                                                                                 |               |                       | De                         | scription ~ |
|                                                 |                                   | •                                                                                               |               |                       |                            | 3           |
| Load from HCAMS Load from DB                    | Save to I                         | DB                                                                                              |               |                       |                            |             |
| Application                                     |                                   |                                                                                                 |               |                       |                            |             |
| 🔿 Tight Fluids 🔎 Oil / Refinery                 | Deasphalt                         | ing 📀 Black Oil                                                                                 | _             |                       |                            |             |
| Summary Yields (Cut Range)                      | Saturation                        | / Asphaltene Onset P                                                                            | Settings      | Equilibrium Results   | Notes                      | Help        |
| ✓ Laboratory Analyses                           | ×                                 | Bulk Experimental Varia                                                                         | ables         |                       |                            |             |
| Cut Ranges Cut Ranges Inputs PIONA Distribution | Na     Sto     Sto     Sto     Ga | ames<br>ock Tank Oil Density [kg/i<br>ock Tank Oil MW<br>is to Oil Ratio (GOR) [Sm <sup>2</sup> | Active<br>m3] | Specified Calculat    | ed Scale<br>1.0000<br>1.00 |             |
| Atomic Inclusion                                |                                   | Ontions                                                                                         | ,,            | SARA Distrib (Sto     | ck Tank Oil)               |             |
| Properties                                      |                                   | Reference Conditions                                                                            |               | Saturates (mass) [%]  |                            |             |
| Asphaltene Precipitation (Live Oil)             |                                   | Source                                                                                          | Global 🗸      | Aromatics (mass) [%]  |                            |             |
|                                                 |                                   | Liq. Ref. T [C]                                                                                 | 15.6          | Resins (mass) [%]     |                            |             |
|                                                 |                                   | Liq. Ref. P [kPa]                                                                               | 101.33        | Asphaltenes (mass) [9 | 6] 🗸 🗸                     |             |
|                                                 | As                                | phaltene Calculations                                                                           |               |                       |                            |             |
| Material                                        |                                   |                                                                                                 |               |                       |                            |             |
| PortName Out                                    |                                   |                                                                                                 |               |                       |                            | ^           |
| Is Recycle Port                                 |                                   |                                                                                                 |               |                       |                            |             |
| Connected Stream/Unit Op                        | -                                 |                                                                                                 |               |                       |                            |             |
| VapFrac                                         |                                   |                                                                                                 |               |                       |                            |             |
|                                                 |                                   |                                                                                                 |               |                       |                            |             |
| P [KPa]<br>Mole Flow (kmal/b)                   |                                   |                                                                                                 |               |                       |                            |             |
| Mass Flow [km0]/h]                              |                                   |                                                                                                 |               |                       |                            |             |
| Volume Flow [m3/h]                              |                                   |                                                                                                 |               |                       |                            |             |
| Std Lig Volume Flow [m3/h]                      |                                   |                                                                                                 |               |                       |                            | ~           |
| Regress Parameters Custom Regre                 | ssion Case                        |                                                                                                 |               |                       |                            | Ignore      |

Now enter the SARA distribution information from the tables above.



| 🛢 🗧 🛛 /OilFeed1 (Oil                                                                                                                                                                                                                                                  | Source)                                                  |                                                                                                                                                                                                                                                                            |                                                  |                                                                                                                     | L                                                                               | □ ×        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------|
| Name OilFeed1                                                                                                                                                                                                                                                         | lissing Live Oil Ligh                                    | t Ends composition. Please ent                                                                                                                                                                                                                                             | er data in Yileo                                 | ds (Cut Range) tab                                                                                                  | Des                                                                             | cription ~ |
| Load from HCAMS Load f<br>Application<br>• Tight Fluids • Oil / Ref<br>Summary Yields (Cut Ra                                                                                                                                                                         | from DB/ Save<br>finery <b>Deasp</b> l<br>ange) Saturati | to DB<br>halting OBlack Oil                                                                                                                                                                                                                                                | Settings                                         | Equilibrium Results                                                                                                 | Notes                                                                           | Help       |
| ✓ Laboratory Analyses     Cut Ranges     ✓ Cut Ranges     Inputs     PIONA Distribution     Atomic Inclusion     Properties     Asphaltene Precipitation (Live C                                                                                                      |                                                          | ✓ Bulk Experimental Variat     Names     Stock Tank Oil Density [kg/m     Stock Tank Oil MW     Gas to Oil Ratio (GOR) [Sm3/     ✓ Options     ✓ Reference Conditions     Source     Liq. Ref. T [C]     Liq. Ref. T [C]     Liq. Ref. P [kPa]     Asphaltene Calculations | Active<br>3]<br>m3]<br>Global+<br>15.6<br>101.33 | Specified Calculated<br>SARA Distrib. (Stock<br>Saturates (mass) [%]<br>Resins (mass) [%]<br>Asphaltenes (mass) [%] | Scale<br>1.0000<br>1.00<br>1.00<br>Tank Oil)<br>39.36<br>36.04<br>9.04<br>15.56 |            |
| Material           PortName           Is Recycle Port           Connected Stream/Unit Op           VapFrac           T [C]           P [kPa]           Mole Flow [kmol/h]           Mass Flow [kg/h]           Volume Flow [m3/h]           Std Li Volume Flow [m3/h] | Out                                                      |                                                                                                                                                                                                                                                                            |                                                  |                                                                                                                     |                                                                                 |            |
| Regress Parameters Custor                                                                                                                                                                                                                                             | m Regression Cas                                         | ie                                                                                                                                                                                                                                                                         |                                                  |                                                                                                                     | [                                                                               | Ignore     |

Note that the status bar is now asking for the Light Ends composition; to add it go to the Yields (Cut Range) tab and enter it in the corresponding frame.



Now, observe that five Cut Ranges have been automatically defined (Light Ends, Cut\_1, Cut\_2, Cut\_3 and Asphaltenes), the last cut represents the asphaltene fraction and its yield has been normalized based on the stock tank asphaltene content and light ends information.



We now need to tune some parameters to find the best slate composition that matches the experimental asphaltene precipitation data. Go back to the Summary tab and enter the Stock Tank properties and define the following P, T and Mole Flow in the Material port: 60 C, 101.325 kPa and 1 kmol/h.

| 🗧 🗧 /OilFeed1 (Oil S                    | Source)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                 |           | <b>#</b>   =    | <b>– ×</b>      |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|-----------|-----------------|-----------------|
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Solved                    |                 |           |                 |                 |
| Name OilFeed1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |           |                 | Description ~   |
|                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                 |           |                 | ×               |
| 白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白 | ╡→                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                         |                 |           |                 |                 |
|                                         | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                 |           |                 |                 |
| Load from HCAMS Load fr                 | om DB Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to DB                     |                 |           |                 |                 |
| Application                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |           |                 |                 |
| 🔿 Tight Fluids 🔎 Oil / Refi             | nery 🔿 Deaspl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | halting OBlack Oil        |                 |           |                 |                 |
| Settings                                | Equilibrium Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sults                     | Notes           |           | Help            |                 |
| Summary                                 | Yields (Cut Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | inge)                     | Saturation / As | phaltene  | Onset P         |                 |
| ✓ Laboratory Analyses                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ✓ Bulk Experimental V     | ariables        |           |                 |                 |
| Cut Ranges                              | <b>I</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Names                     | Active          | Specified | alculated       | Scale           |
| Cut Ranges                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stock Tank Oil Density [  | kg/m3]          | 919.00    | 887.359         | 3 <b>1.0000</b> |
| Inputs                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stock Tank Oil MW         |                 |           | 193.8           | 32 1.00         |
| PIONA Distribution                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gas to Oil Ratio (GOR) [5 | Sm3/m3]         | 100.      | <b>63</b> 96.5  | 59 <b>1.00</b>  |
| Atomic Inclusion                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X Options                 |                 |           | Distrib (Stock  | Tank Oil)       |
| Properties                              | Image: A state of the state | ✓ Options                 |                 | * SANA L  | JISTIID. (SLOCK |                 |
| Asphaltene Precipitation (Live O        | il) 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference Conditions      |                 | Saturates | (mass) [%]      | 39.36           |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source                    | Global+         | Aromatic  | s (mass) [%]    | 36.04           |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LIQ. RET. I [C]           | 15.6            | Resins (m | (ass) [%]       | 9.04            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LIQ. RET. P [KPa]         | 101.33          | Asphalter | nes (mass) [%]  | 15.56           |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asphaltene Calculations   |                 |           |                 |                 |
| Material                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |           |                 |                 |
| PortName                                | Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                 |           |                 | ^               |
| Is Recycle Port                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |           |                 |                 |
| Connected Stream/Unit Op                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                 |           |                 |                 |
| VapFrac                                 | 0.56704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                 |           |                 |                 |
| T [C]                                   | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                 |           |                 |                 |
| P [kPa]                                 | 101.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                 |           |                 |                 |
| Mole Flow [kmol/h]                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                 |           |                 |                 |
| Mass Flow [kg/h]                        | 114.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                 |           |                 |                 |
| Volume Flow [m3/h]                      | 15.485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                 |           |                 |                 |
| Std Liq Volume Flow [m3/h]              | 0.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                 |           |                 |                 |
| Std Gas Volume Flow [Sm3/d]             | 5.6857E+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                 |           |                 | *               |
| Regress Parameters Custom               | Regression Cas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | se                        |                 |           |                 | <b>Ign</b> ored |

The next step is to add the vapor pressure data. Go to the **Saturation / Asphaltene Onset P** tab and enter the Saturation Pressure data from Gonzalez et al. [2]:





The Saturation pressure data is calculated based on the defined cut ranges which depend on the *Yield* and *Density Regression Parameters* from the **Settings** tab. To match the data, we need to tune these parameters and to accelerate the solution set the *Max. Iteration* parameter to *50* in the **Settings** tab, then click on the *Regress Parameters* button to run a regression that will match the Saturation Pressure and Stock tank properties by manipulating the Regression Parameters.



|                            |                 |                     |          |                    | <b>#</b> | -    | _ ×       |
|----------------------------|-----------------|---------------------|----------|--------------------|----------|------|-----------|
|                            |                 | Ready to regress pa | rameters |                    |          |      |           |
| lame OilFeed1              |                 |                     |          |                    |          | Desc | ription ~ |
| e                          |                 |                     |          |                    |          |      | 3         |
| Ę                          |                 | •                   |          |                    |          |      |           |
| oad from HCAMS Load        | from DB Save t  | o DB                |          |                    |          |      |           |
| Application                |                 |                     |          |                    |          |      |           |
| O Tight Fluids • Oil / Re  | finery ODeaspha | alting 🛛 Black Oi   | i        |                    |          |      |           |
| Summary                    | Yields (Cut Ran | ge)                 | Satura   | ation / Asphaltene | Onset P  |      |           |
| Settings                   | Equilibrium Res | ults                | Note     | S                  | Help     |      |           |
| Load Parameters for Aspha  | ltene 🕶         |                     |          | _                  |          |      |           |
| ✓ Main Settings            |                 | ✓ Regressed Par     | ameters  |                    |          |      |           |
| Cut Group Delta T [C]      | 20.00           | Split P             | 2.00     |                    |          |      |           |
| PIONA Distrib, Delta T [C] | 405.00          | Split I             | 2.00     |                    |          |      |           |
| A Regression               |                 | Split O             | 0.00     |                    |          |      |           |
| Max. Iterations            | 50              | Split N             | 1.50     |                    |          |      |           |
| Regression Tolerance       | 0.1000          | Split A             | 1.00     |                    |          |      |           |
| Optimization Method        | Nelder Mead +   | Split Adh           | 0.3500   |                    |          |      |           |
| Obj. Function Type         | Least Squares - | Yield Factor 1      | 2.30     |                    |          |      |           |
| ✓ PIONA Family Inclusion   |                 | Yield Factor 2      | 1.49     |                    |          |      |           |
| Desetting Includion        |                 | Density Factor 1    | 1.00     |                    |          |      |           |
| Paramins                   |                 | Density Factor 2    | 715.00   |                    |          |      |           |
| Olefee                     |                 | Alpha (Asp)         | 3.00     |                    |          |      |           |
| Naphthanas Z               |                 | Eta (Asp)           | 1000.00  |                    |          |      |           |
| Napittieries               |                 | MW (Asp)            | 2500.00  |                    |          |      |           |
| Aromatics                  |                 |                     |          |                    |          |      |           |

Once it is done (it may take a few minutes depending on the computer) observe the new results:

| 🛢 🌻 🛛 /OilFeed1 (Oil             | Source)         |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | μ.          |        | • •        |
|----------------------------------|-----------------|------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------|------------|
|                                  |                 | Ready to regress para  | meters    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Name OilFeed1                    |                 |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | Desc   | cription - |
| F                                | ⇒               | _                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| E                                |                 |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Load from HCAMS Load f           | rom DB Save     | e to DB                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Application                      |                 |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| 🔿 Tight Fluids 🌘 Oil / Ref       | finery ODeasp   | halting 🛛 Black Oil    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Settings                         | Equilibrium Re  | esults                 | Notes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            | Help        |        |            |
| Summary                          | Yields (Cut Ra  | ange)                  | Saturatio | n / As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | phaltene Or  | nset P      |        |            |
| ✓ Laboratory Analyses            |                 | ✓ Bulk Experimental    | Variables |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Cut Ranges                       | ~               | Names                  | μ         | ctive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Specified    | Calculate   | d :    | Scale      |
| Cut Ranges                       |                 | Stock Tank Oil Density | [kg/m3]   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 919.0000     | 905.5       | 467    | 1.0000     |
| Inputs                           |                 | Stock Tank Oil MW      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 17          | 4.91   | 1.00       |
| PIONA Distribution               |                 | Gas to Oil Ratio (GOR) | [Sm3/m3]  | <ul> <li>Image: A set of the set of the</li></ul> | 100.63       | 9           | 8.85   | 1.00       |
| Atomic Inclusion                 |                 |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | trib (Sto   | ck Tar |            |
| Properties                       | ~               |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · JAIN DIS   |             |        |            |
| Asphaltene Precipitation (Live C | Dil) 🔽          | A Reference Condition  | is and    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Saturates (n | nass) [%]   |        | 39.36      |
|                                  |                 | Source                 | GIO       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aromatics (  | mass) [%]   | -      | 36.04      |
|                                  |                 | Liq. Ker. T [C]        | 10        | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Resins (mas  | S) [76]     |        | 9.04       |
|                                  |                 | Asphaltene Calculation |           | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Asphaitene   | s (mass) (s | 0]     | 5.50       |
| Material                         |                 |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| PortName                         | Out             |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        | 1          |
| Is Recycle Port                  |                 |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Connected Stream/Unit Op         | -               |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| VapFrac                          | 0.55245         |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| T [C]                            | 60.0            |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| P [kPa]                          | 101.33          |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Mole Flow [kmol/h]               | 1.00            |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Mass Flow [kg/h]                 | 108.38          |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Volume Flow [m3/h]               | 15.070          |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Std Liq Volume Flow [m3/h]       | 0.137           | ,                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Std Gas Volume Flow [Sm3/d]      | 5.6857E+2       |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |        |            |
| Regress Parameters Custor        | n Regression Ca | se                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | E      | Ignore     |



| 🛢 🏮 /OilFeed1 (O                                                                                                                                                                                                                                  | il Source)                                                                                                                                                                                                         |                                                                                           | <b>⊥</b>   _                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------|
|                                                                                                                                                                                                                                                   | Ready to re                                                                                                                                                                                                        | gress parameters                                                                          |                                 |
| Name OilFeed1                                                                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                           | Description                     |
|                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                    | _                                                                                         | 1                               |
|                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                    | •                                                                                         |                                 |
| Load from HCAMS Load                                                                                                                                                                                                                              | from DB Save to DB                                                                                                                                                                                                 |                                                                                           |                                 |
| Application                                                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                           |                                 |
| 🗆 Tight Fluids 🌘 Oil / R                                                                                                                                                                                                                          | efinery ODeasphalting OB                                                                                                                                                                                           | lack Oil                                                                                  |                                 |
| Settings                                                                                                                                                                                                                                          | Equilibrium Results                                                                                                                                                                                                | Notes H                                                                                   | Help                            |
| Summary                                                                                                                                                                                                                                           | Yields (Cut Range)                                                                                                                                                                                                 | Saturation / Asphaltene On                                                                | iset P                          |
| Sat P Points           Asphaltene Onset P (AOP) C           T         Sat P Specified           [C]         [kPa]           26.7         11718.00           31.1         12063.00           37.8         12752.00           97.8         16681.00 | Sat P Calculated         Scale           (RPa)         (RPa)           0         12281.90           12007.29         100.00           0         13078.91           0         14827.29           0         16452.00 | 16000<br>15500<br>15500<br>15000<br>14500<br>14500<br>13000<br>13000                      | P Sat.(Spec.)<br>P Sat. (Calc.) |
|                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                    | 12000<br>12000<br>1500<br>20 40 60 80 100<br>Temperature [C]<br>X = 50.1370, Y = 10518.46 |                                 |
| Regress Parameters Cust                                                                                                                                                                                                                           | om Regression Case                                                                                                                                                                                                 |                                                                                           | Ignore                          |

Note how the Yield and Density parameters had been adjusted to match the Saturation Pressure and Stock Tank Oil properties. Now click on the *Asphaltene Onset P (AOP) Curve* box from the Saturation / Asphaltene Onset P tab to add the asphaltene onset pressure data from Gonzalez et al. [2].

| 🛢 🏮 /OilFeed1 (Oil Source)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>≖</b>   _                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Solved                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |
| Name OilFeed1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description ~                                                         |
| Load from HCAMS Load from DB<br>Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Save to DB                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |
| Summary Yields (Cut Range) Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | turation / Asphaltene Onset P | Settings Equilibrium Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notes Help                                                            |
| Options           Saturation P (Sat P) Curve           Sat P Points           Asphaltene Onset P (AOP) Curve           AOP Phase Frac Criterion           # Apphaltene Distribution Parameters           Alpha (Asp)           Regress Asphaltene Distribution Parameters           T           Sat P Specified           Sat P Specified           Sat P Specified           Sat P Specified           T           I(Pa)           I(Pa) |                               | a construction of the second s | P Sat.(Spec.)<br>P Sat. (Calc.)<br>Onset P (Spec.)<br>Onset P (Calc.) |
| <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an Casa                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ignored                                                               |



Observe that there is an extra parameter called *AOP Phase Frac Criterion*, this is the mole phase fraction value at which one can consider the appearance of an asphaltene phase. The default value is 1E-06 but can be customized or used as tuning parameter if necessary.

Now click on the *Regress Asphaltene Distribution Parameters* button, this will adjust the average molecular weight of asphaltenes, MW (Asp) parameter, to match the asphaltene onset pressure. Once the regression is done observe the new results.

| 🛢 🔻 🛛 /OilFeed1 (Oil Source)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>≖</b> ∣_ = ×                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Regressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |
| Name OilFeed1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Description ~                                                                           |
| Load from HCAMS Load from DB Save to DB<br>Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36                                                                                      |
| Summary         Yields (Cut Range)         Saturation / Asphaltene Onset P         Settings         Equilibrium Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notes Help                                                                              |
| Options         Saturation P (Sat P) Curve         Saturation P (Sat P) (Saturation P (Saturation P (Saturation P (Sat P) (Saturation P (SaturationP (Saturation P (Saturation P (S | P Sat.(Spec.)<br>P Sat. (Calc.)<br>P Sat. (Calc.)<br>Onset P (Spec.)<br>Onset P (Calc.) |
| [C]         [kPa]         [kPa]         [kPa]         Temperature [C]           65.0         34809.00         34199.87         1.00         X = 131.090, Y = 84.5070           98.0         31707.00         26614.13         1.00 ×         X = 131.090, Y = 84.5070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                       |
| Regress Parameters Custom Regression Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ignored                                                                                 |

Now the Oil Source has found the best fluid compositions that can match Stock Tank, Saturation and Asphaltene Onset Pressure data.

We can do now more studies using other tools from the Oil Source, like plotting saturation and asphaltene onset pressure lines with no more tuning required. To do, so go back to the Summary tab and click the *Asphaltene Calculations* box from the *Options* frame.



| 🛢 🌻 🛛 /OilFeed1 (Oil S                                                                                         | ource)         |                         |                     |                  | Ŧ                  | _ = ×         |
|----------------------------------------------------------------------------------------------------------------|----------------|-------------------------|---------------------|------------------|--------------------|---------------|
|                                                                                                                |                | So                      | lved                |                  |                    |               |
| Name OilFeed1                                                                                                  |                |                         |                     |                  |                    | Description ~ |
|                                                                                                                | ]→             | •                       |                     |                  |                    | 1             |
| Load from HCAMS Load from                                                                                      | om DB Save     | to DB                   |                     |                  |                    |               |
| Application                                                                                                    |                |                         |                     |                  |                    |               |
| 🔿 Tight Fluids 🔎 Oil / Refi                                                                                    | nery ODeaspl   | alting OBlack Oil       |                     |                  |                    |               |
| Settings                                                                                                       | Equilibrium    | Results                 | Notes               |                  | Help               |               |
| Summary Yields                                                                                                 | (Cut Range)    | Saturation /            | Asphaltene Ons      | et P             | Asphaltene Calcu   | lations       |
| ✓ Laboratory Analyses                                                                                          |                | ✓ Bulk Experimental \   | /ariables           |                  |                    |               |
| Cut Ranges                                                                                                     | ~              | Names                   | Active              | Specified Cal    | culated Scale      |               |
| Cut Ranges                                                                                                     |                | Stock Tank Oil Density  | [kg/m3]             | 919.0000         | 905.3310 1.0000    |               |
| Inputs                                                                                                         |                | Stock Tank Oil MW       |                     |                  | 174.81 1.00        |               |
| PIONA Distribution                                                                                             |                | Gas to Oil Ratio (GOR)  | [Sm3/m3]            | 100.63           | 98.82 1.00         |               |
| Atomic Inclusion                                                                                               |                |                         |                     |                  | (C) 1 7 1 0 10     |               |
| Properties                                                                                                     |                | ✓ Options               |                     | ✓ SARA Distrib   | . (Stock Tank Oil) |               |
| Asphaltene Precipitation (Live Oi                                                                              |                | Reference Conditions    | 5                   | Saturates (mass  | ) [%] 39.36        |               |
| and a second |                | Source                  | Global <del>v</del> | Aromatics (mas   | s) [%] 36.04       |               |
|                                                                                                                |                | Liq. Ref. T [C]         | 15.6                | Resins (mass) [9 | 6] 9.04            |               |
|                                                                                                                |                | Liq. Ref. P (HPe)       | 101.22              | Asphaltenes (m   | ass) [%] 15.56     |               |
|                                                                                                                |                | Asphaltene Calculations | 5                   |                  |                    |               |
| Material                                                                                                       |                |                         |                     |                  |                    |               |
| PortName                                                                                                       | Out            |                         |                     |                  |                    | ^             |
| Is Recycle Port                                                                                                |                |                         |                     |                  |                    |               |
| Connected Stream/Unit Op                                                                                       | -              |                         |                     |                  |                    |               |
| VapFrac                                                                                                        | 0.5522         |                         |                     |                  |                    |               |
| T [C]                                                                                                          | 60.0           |                         |                     |                  |                    |               |
| P [kPa]                                                                                                        | 101.33         |                         |                     |                  |                    |               |
| Mole Flow [kmol/h]                                                                                             | 1.00           |                         |                     |                  |                    |               |
| Mass Flow [kg/h]                                                                                               | 108.35         |                         |                     |                  |                    |               |
| Volume Flow [m3/h]                                                                                             | 15.063         |                         |                     |                  |                    |               |
| Std Liq Volume Flow [m3/h]                                                                                     | 0.137          |                         |                     |                  |                    |               |
| Std Gas Volume Flow [Sm3/d]                                                                                    | 5.6857E+2      |                         |                     |                  |                    | ~             |
| Regress Parameters Custom                                                                                      | Regression Cas | e                       |                     |                  |                    | Ignore        |

This enables a new tab called Asphaltene Calculations. Here single point or envelope onset pressure calculations can be done. The calculation results can be reported in Table or Plot formats:

| 🗦 🗧 🛛 /OilFeed1                                                                                                                  | (Oil Sou            |                    |                                                     |                                   |                                                                                                  |                         |                |                    |       | щ          |          |          |      |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-----------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|-------------------------|----------------|--------------------|-------|------------|----------|----------|------|
|                                                                                                                                  |                     |                    |                                                     |                                   | Solved                                                                                           |                         |                |                    |       |            |          |          |      |
| Name OilFeed1                                                                                                                    |                     |                    |                                                     |                                   |                                                                                                  |                         |                |                    |       |            | De       | scriptio | on ~ |
| Load from LICAMS                                                                                                                 |                     |                    |                                                     |                                   | •                                                                                                |                         |                |                    |       |            |          |          | x    |
| Application                                                                                                                      |                     | DB   Save          | ю ОБ                                                |                                   |                                                                                                  |                         |                |                    |       |            |          |          |      |
| Application                                                                                                                      |                     | ~-                 |                                                     |                                   |                                                                                                  |                         |                |                    |       |            |          |          |      |
| O Tight Fluids • Oil                                                                                                             | / Refiner           | y O Deasp          | halting                                             | ) Blac                            | COIL                                                                                             |                         |                |                    |       |            |          |          |      |
| Settings                                                                                                                         |                     | Equilibriur        | n Results                                           |                                   |                                                                                                  |                         | Not            | es                 |       | Help       |          |          |      |
| Summary                                                                                                                          | Yields (Cu          | it Range)          |                                                     | Satura                            | ition / As                                                                                       | phalte                  | ene Or         | nset P             | Aspha | tene Calci | ulations |          |      |
| Options                                                                                                                          |                     |                    | Asphalt                                             | ene On                            | set Pressu                                                                                       | re                      |                |                    |       |            |          |          |      |
| Asphaltene Onset Pressu<br>Asphaltene Envelope<br>Solvent Deasphalting Dat<br>Asphaltene Onset Press<br>AOP Phase Frac Criterion | ta<br>sure<br>1.00E |                    | Name<br>AOP [kPa<br>Vapor P<br>Lower A0<br>Asphalto | a]<br>[kPa]<br>DP [kPa<br>ene Env | <ul> <li>Value</li> <li>3578</li> <li>1453</li> <li>1453</li> <li>753</li> <li>relope</li> </ul> | 82.51<br>82.51<br>82.51 | 0              | 100                |       |            |          |          |      |
| Lower AOP                                                                                                                        |                     | 5.0                | [C]                                                 | ture<br>10.0                      | AOP<br>[kPa]                                                                                     | Vapo<br>[kPa]           | r P<br>04.11   | [kPa]              |       |            |          |          |      |
| Vapor P                                                                                                                          | Ľ                   |                    |                                                     | 20.0                              | 74160.01                                                                                         | 117                     | 93.59          | 2485.00            |       |            |          |          |      |
| Asphaltene Envelope<br>Asph. Env. Phase Frac Cri                                                                                 | iterion             | .00E-06            |                                                     | 30.0<br>40.0                      | 57546.99<br>48254.06                                                                             | 125                     | 46.99<br>54.06 | 3171.99<br>4754.06 |       |            |          |          |      |
| Min. Temperature [C]<br>Max. Temperature [C]                                                                                     |                     | 10.0               |                                                     | 50.0<br>60.0                      | 40165.48<br>35782.51                                                                             | 139<br>145              | 15.48<br>32.51 | 6165.48<br>7532.51 |       |            |          |          |      |
| Low AOP Envelope                                                                                                                 | L                   | 10                 |                                                     | 70.0                              | 32294.24                                                                                         | 151                     | 06.74          | 8919.24            |       |            |          |          |      |
| Vapor P Envelope                                                                                                                 |                     | -                  |                                                     | 80.0                              | 29702.41                                                                                         | 156                     | 39.91          | 10108.66           |       |            |          |          |      |
| View Option                                                                                                                      |                     | Table <del>-</del> |                                                     | 100.0                             | 26582.61                                                                                         | 165                     | 89.93          | 12054.05           |       |            |          |          |      |
|                                                                                                                                  |                     |                    |                                                     |                                   |                                                                                                  |                         |                |                    |       |            |          |          |      |
| Regress Parameters                                                                                                               | ustom Re            | gression Ca        | se                                                  |                                   |                                                                                                  |                         |                |                    |       |            |          | Ign      | ored |

The Plot option shows the phase boundary lines between asphaltene, vapor and liquid phases; this plot can help user to identify the conditions for region where asphaltene precipitation may or may not happen.





A Material Stream that contains asphaltene–like components can monitor their formation based on the temperature and pressure condition of the stream. To see how this works connect a Material Stream to the characterized Oil Source.



In the Material Stream, go to the More Properties tab and check the *Solids Formation* box, this will open a new tab called **Solids Formation**.



|                                                                                                                                                                                                            | Solved                                                                                                                                                                                                                                                                     |                |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|
| ame S1                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |                | Description |
| Dec From                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                            |                | Is Recyc    |
| Refinery                                                                                                                                                                                                   | Solids Formation                                                                                                                                                                                                                                                           | Settings       | Notes       |
| Summary                                                                                                                                                                                                    | Equilibrium Results M                                                                                                                                                                                                                                                      | ore Properties | Line Sizing |
| Emissions - Flash Emissi<br>Natural Gas - Compor<br>Phase Flows - Gas, Oil<br>Phase Boundaries - En<br>Hydrocarbon Propertie<br>Thermal Properties - C<br>Extended Physical Prop<br>Solids Formation - Hyc | ions, CO2 Equivalence, etc.<br>ent Content, Gas SG, NGL Content, etc<br>and Water Flows, GOR, Water Cut, etc.<br>lelope, Bubble Point, Dew Point, etc.<br>s - API Gravity, Viscosity, RON, MON,<br>b, H, S, etc.<br>erties - Cp/Cv, dp/dV, Z, etc.<br>rates, Waxes, Solids |                |             |

In the Solids Formation Box, open the Asphaltene node to observe the different calculations for asphaltenes.

| → 🗧 🛛 /S1 (Mate                             | erial Stream)        |            |                                                                                                                               | <b>∓</b>   _            |  |  |
|---------------------------------------------|----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
|                                             |                      | Solved     |                                                                                                                               |                         |  |  |
| Name S1                                     |                      |            |                                                                                                                               | Description ~           |  |  |
| Spec From                                   |                      |            |                                                                                                                               | Is Recycle              |  |  |
| Summary                                     | Equilibrium Results  | Мо         | re Properties                                                                                                                 | Line Sizing             |  |  |
| Refinery                                    | Solids Formation     |            | Settings                                                                                                                      | Notes                   |  |  |
| Conditions<br>Name > Value<br>Current T [C] | e<br>60.0            |            | Phase Envelope                                                                                                                | Unit Operation for more |  |  |
| Current P [kPa] 1000<br>> Hydrate           | 00.00                |            | information on Solid Formation Curves<br>Hydrate<br>Add a Hydrate Unit Operation for more<br>information on Hydrate formation |                         |  |  |
| > Wax                                       |                      |            |                                                                                                                               |                         |  |  |
| Name                                        |                      | > Value    |                                                                                                                               |                         |  |  |
| Is Formed                                   |                      | ✓          |                                                                                                                               |                         |  |  |
| Phase Frac (Mole) [Fract                    | ion]                 | 0.0004     | 8                                                                                                                             |                         |  |  |
| Asphaltene Onset Pressu                     | ure (AOP) [kPa]      | 35782.5    | 1                                                                                                                             |                         |  |  |
| Lower Asphaltene Onset                      | Pressure (AOP) [kPa] | 7532.5     | 1                                                                                                                             |                         |  |  |
| AOP Phase Frac Criterio                     | n                    | 1.00E-0    | 6                                                                                                                             |                         |  |  |
| AOP App P [kPa]                             |                      | -2467.4892 | 5                                                                                                                             |                         |  |  |
| Formation Warnings                          |                      | _          |                                                                                                                               |                         |  |  |
| Warning App P [kPa]                         |                      | 100.0      | 0                                                                                                                             |                         |  |  |
| > Solid                                     |                      |            |                                                                                                                               |                         |  |  |
| Create Port Delete P                        | ort                  |            |                                                                                                                               | Ignored                 |  |  |

The calculations include a box to know if the Asphaltenes are formed, the asphaltene mole phase fraction, the Asphaltene Onset Pressure and Approach Pressure, and a box to activate Formation Warnings. The last box is used to set up Material Stream asphaltene formation alarms; if asphaltenes are formed, the status bar of the Material Stream will turn red and show a message about the possible formation. Activate the Formation Warnings box and change the Oil Source Material Port Pressure to 10 MPa, now observe the message in the Material Stream status bar:



| $\rightarrow$ = /S1 (Material Stream)                                                                                     |              |       |                                                   | ₩  .                     | •                      | ×         |
|---------------------------------------------------------------------------------------------------------------------------|--------------|-------|---------------------------------------------------|--------------------------|------------------------|-----------|
| Asphaltene forms at these Stre                                                                                            | am condition | ns (A | pproach P [kPa] = -2.4                            | 7e+03)                   |                        |           |
| Name S1                                                                                                                   |              |       |                                                   |                          | Descript               | tion      |
| Spec From                                                                                                                 |              |       |                                                   | •••                      | 🗌 ls Re                | cycl      |
| Summary Equilibrium Results                                                                                               | N            | lore  | Properties                                        | Line S                   | Sizing                 |           |
| Refinery Solids Formation                                                                                                 |              | :     | Settings                                          | Note                     | es                     |           |
| Conditions           Name         > Value           Current T [C]         60.0           Current P [kPa]         10000.00 |              |       | Phase Envelope                                    | Jnit Opera<br>lid Forma  | ation for<br>tion Curv | mor<br>es |
| <ul> <li>&gt; Hydrate</li> <li>&gt; Wax</li> <li>&gt; Asphaltene</li> </ul>                                               |              |       | Hydrate<br>Add a Hydrate Uni<br>information on Hy | it Operati<br>drate forr | on for mo<br>mation    | ore       |
| Name                                                                                                                      | > Value      |       |                                                   |                          |                        |           |
| Is Formed                                                                                                                 | ~            |       |                                                   |                          |                        |           |
| Phase Frac (Mole) [Fraction]                                                                                              | 0.00         | 048   |                                                   |                          |                        |           |
| Asphaltene Onset Pressure (AOP) [kPa]                                                                                     | 35782        | .51   |                                                   |                          |                        |           |
| Lower Asphaltene Onset Pressure (AOP) [kPa]                                                                               | 7532         | 2.51  |                                                   |                          |                        |           |
| AOP Phase Frac Criterion                                                                                                  | 1.00E        | -06   |                                                   |                          |                        |           |
| AOP App P [kPa]                                                                                                           | -2467.48     | 925   |                                                   |                          |                        |           |
| Formation Warnings                                                                                                        | ~            | _     |                                                   |                          |                        |           |
| Warning App P [kPa]                                                                                                       | 100          | .00   |                                                   |                          |                        |           |
| > Solid                                                                                                                   |              |       |                                                   |                          |                        |           |
| Create Port Delete Port                                                                                                   |              |       |                                                   |                          | 🗌 lg                   | nore      |

In a flowsheet environment, these alarms can be set up in any Material Stream providing a monitoring asphaltene formation system into your Symmetry process platform flowsheet.

## References

[1] Loria, H. "PIONA Characterization in VMGSim 8.0" VMG's Technical Newsletter, December 2013.

[2] Gonzalez, D. L.; Mahmoodaghdam, E.; Lim, F.; Joshi, N. *Effects of Gas Additions to Deepwater Gulf of Mexico Reservoir Oil: Experimental Investigation of Asphaltene Precipitation and Deposition*. SPE 159098

To learn more about the Symmetry Process Software Platform please contact your local Schlumberger office.



\* Mark of Schlumberger