The role of mobile shales in the formation of anticlines and hydrocarbon accumulations in the NW Sabah Fold Belt, offshore Malaysia

Nguyen Binh ⁽¹⁾, John Jong ⁽²⁾, Yuji Takahashi ⁽¹⁾ and Naoya Wada ⁽³⁾

(1) JX Nippon Oil & Gas Exploration Corporation
(2) JX Nippon Oil & Gas Exploration (Deepwater Sabah) Limited
(3) Schlumberger SIS

September 13–15 Le Palais des Congrès de Paris

Outline

I. Introduction

- 1. Background and Objectives
- 2. Approach

II. Modelling Results

- 1. Basin Modelling
- 2. Modelling Outcomes

III. Conclusions

Outline

- I. Introduction
 - 1. Background and Objectives
 - 2. Approach

II. Modelling Results

- 1. Basin Modelling
- 2. Modelling Outcomes

III. Conclusions

Study Area

Area Potentially Impacted by Mobile Shales

Area Potentially Impacted by Mobile Shales

Background and Objectives

- Significant oil and gas fields have been discovered in anticlinal traps in the Sabah Fold Belt.
- However, petroleum systems are not fully understood in this fold belt area.
 - Effective source rock intervals and mature kitchens are not well defined
 - > Hydrocarbon migration & charge mechanisms remain uncertain
- It is inferred from seismic observations that the presence of "mobile shales" play an important role in hydrocarbon migration and charge mechanisms.
- The objectives of this study are to incorporate the concept of mobile shales into hydrocarbon migration and charge systems in the fold belt area, and build a new hydrocarbon migration and charge model using basin modelling technique.

Generalized stratigraphy of the study area (Offshore Sabah & NW Sarawak)

Geological Age	Absolute Age (Ma)	Proximal onshore Formation	Sabah Deepwater Depositional Fan Units & Lithology	Oil/Gas Discoveries	Tectonic stage
Miocene - Q	4.4 5.1 5.5 6.7 9.0 10.5 11.4 15.5	POST LIANG LIANG TUKAU MIRI LAMBIR	L-Fan Y-Fan P-Fan Km-Fan Kb-Fan	• \$ • \$	Inversion Post-rift
Eocene Oligocene	23.5 34 55		Slope to basinal		Rift Pre- rift

(Modified after Van Hattum et al., 2006; Cullen, 2010; Kessler and John, 2015)

Regional Seismic Cross Section

NW

Sediment Loading

The regional NW-SE dip section across the NW Sabah province, offshore Malaysia suggests a compressional fold and thrust belt driven by sediment loading with diapirism of mobile shales (the "Setap Shale") in anticlinal cores.

Jong et al., (2015)

Sedimentation is ongoing while folds develop.

Mobile Shale

Top: Potential shale diapir interpreted in the regional seismic data (Kessler and Jong, 2016)

Left: Mud volcano observed in the study area (courtesy of JX Nippon)

Mobile shales are highly overpressured mud or shale substrates involving grain-to-grain plastic flow. The shales behave overall in a weak, ductile manner rather than as a fluid. They may move by shearing at critical state deformation (Van Rensbergen & Morley, 2003).

Approach

• Approach:

Basin modelling technique (using PetroMod software by Schlumberger)

Integrated Data:

- Seismic Interpretation
- Well Data:
 - Rock physical properties
 - Geochemical data
 - Logging data

Conceptual model for shale mobility:

Overpressured and under-compacted shales overlain by a thick and denser sediment layer can become mobile under critical conditions.

Outline

- I. Introduction
 - 1. Background and Objectives
 - 2. Approach

II. Modelling Results

- 1. Basin Modelling
- 2. Modelling Outcomes

III. Conclusions

Regional Seismic Cross Section

Boundary Conditions

1. Paleo- water depths:

- has been the same as present depth since 10.8 Ma

- were shallower than present day depth before 10.8 Ma

2. Paleo-temperature at the sediment-water interface depend on paleowater depths.

3. Paleo-heat flow maps have been created from frifting heat flow models with beta values of 1.5 - 1.7.

Temperature, vitrinite reflectance, Tmax, LOP and pore pressure data derived from 4 key wells have been used for modelling calibration.

Overpressure Distribution - Model 1

Overpressure Distribution - Model 2

Impact of mud volcanoes in overpressure distribution

Overpressure (MPa)

Stress over failure distribution above mobile shales

values the Morhr circle exceeds the yieldline which indicate fracturing.

Stress over failure distribution around mud volcanoes

Impact of Shale Mobility in pore pressure in Structure AA

High pore pressure \rightarrow sediments less compacted \rightarrow Higher porosity/permeability

S-20

0

Oil Migration and Charging

Hydrocarbon Types and Amount of HC Accumulated by Models 1 & 2

 Both models charged oil with minor gas in the multiple reservoirs in Structure AA. It is consistent with the well results.

 Model 2 charged much bigger amount of hydrocarbon than Model 1 (especially oil) because HC migration has been facilitated due to fractures and higher permeability.

Impact of mud volcanoes in HC accumulation

Outline

I. Introduction

- 1. Background and Objectives
- 2. Approach

II. Modelling Results

- 1. Basin Modelling
- 2. Modelling Outcomes

III. Conclusions

Conclusions

- Toe-thrust anticlines have resulted from compressional folding driven by sediment loading in the NW Sabah Fold Belt. The modeled mobile shale may facilitate the creation of shale-cored structures in this area.
- Shale mobilization and mud volcanoes can contribute locally to high pore pressure gradients and fractures.
- The resulting fractures may facilitate fluid flows including hydrocarbon migration (especially oil).
- Mud volcanoes generated from highly overpressured shale may affect the amount of oil and gas accumulations in the nearby traps.

Acknowledgements

This work was presented as an oral presentation in 2016 International Geological Congress, and updated for this forum with an additional model to study the impact of mud volcanism associated with highly overpressured shale on oil and gas accumulations in nearby traps. We thank the Management of JX Nippon Oil & Gas Corporation for providing the supporting data and permission to publish and share this presentation.

Our utmost appreciation goes to our exploration colleagues in KL and Miri Offices (Malaysia) for their insightful discussions and suggestions that enhanced the quality of this study.

