A new approach to manage non-traditional structural model geometries applied to Lubina - Montanazo field, Spain: Powered by Volume Based Modeling algorithm in Petrel

Rosa Aguilar ⁽¹⁾, Carlos Nuñez ⁽²⁾, Vanessa Villarroel ⁽²⁾, Marcos Victoria⁽¹⁾ ⁽¹⁾Repsol, ⁽²⁾Schlumberger

September 13–15 Le Palais des Congrès de Paris Schlumberger

Agenda

- Introduction
 - ✓ Background
 - ✓ Challenges
 - ✓ Proposed solutions
- Reservoir characterization
 - ✓ Faults
 - ✓ Horizons
- Fault framework and Volume Based Modeling (VBM)
- Stair-Step Gridding
- Results & Conclusions

Background

- Two oil wells producing from a fractured carbonate reservoir
- 5 km NE-SW elongated structure with rotated blocks limited by two lateral faults
- Two reservoir rocks over-imposed; sucrosic dolomites and karstified limestones
- Complex stratigraphic relationships with carbonates patches and onlaps/downlaps
- Complex fault geometries and truncations

RESERVOIR CHARACTERIZATION AULT FRAMEWOR

STRUCTURAL GRIDDING

RESULTS AND

Challenges

•

- Represent the complex carbonate's geology in a 3D model capturing the reservoir behavior and connectivity.
- Several issues faced using Traditional Pillar gridding :
 - 1) Too complex fault modeling process; not all the faults included in the 3D grid
 - 2) Structural and stratigraphic complexity was not honored
 - 3) Resulting 3D grid with a large number of distorted cells; slow simulation and convergence problems

AULT FRAMEWOR AND VBM

STRUCTURAL GRIDDING

Pillar grid faults Solve the stratigraphic and structural complexities \checkmark Vs. Assure to build the optimum grid to run dynamic simulations \checkmark **Structural Framework faults** RESERVOIR INTRODUCTION **CHARACTERIZATION**

Reduce the time spent on building the structural grids \checkmark

Use the Structural Framework (SF), Volume Based Model (VBM)

algorithm, and Stair-step gridding to :

Reservoir Characterization

Stratigraphic & Structural Model

Reservoir Characterization

Reservoir Characterization

INTRODUCTION

Top Cretaceous

Final Horizon configuration

RESERVOIR CHARACTERIZATION

FAULT FRAMEWOR AND VBM

3rd stage

STRUCTURAL GRIDDIN

RESULTS AND CONCLUSIONS

Structural Modeling Workflow

Fault framework and VBM

Structural Modeling – Fault Framework

- Fault framework process simplifies the fault modeling
- All fault geometries and truncations easily handled
- Drastic reduction of time spent in fault modeling and editing

RESERVOIR

CHARACTERIZATION

Fault Framework and VBM

Structural Modeling – Input Data Preparation

Horizon Clean-up:

Clean wrong sided data to avoid incorrect modeling of horizons

Fault Framework and VBM

Fault Framework and VBM

Structural Modeling – Horizon Modeling

Need of combining different horizons and changing stratigraphic relationships to capture complexity

Stair-Step Gridding

Structural gridding

- **Structural gridding** process generates **Stair-step grids** which avoid the shortcomings and limitations of the Pillar grids related to complex structural relationships and cells distortion.
- Stair-step grids are more suitable for simulation than traditional Pillar grids. Usually, less time is needed for review and QC

STRUCTURAL GRIDDING

RESERVOIR

CHARACTERIZATION

Structural Gridding

Cell Angle property

Results

I.

- All the faults were included in the final Structural grid. It was not possible in the Pillar grid
- Maximum cells angle drastically reduced Π.
- No cells inside out and no cells with negative volume III.
- Volumetrics showing similar values than the Pillar grid IV. model, with a difference of less than 1%

	Cell angle	% of cells (Stair- Step grid)	% of cells (Corner point grid)						
	<15°	95	37						
	<25°	99	66						
	Max. Angle	44 º	77º						

Original Interpretation

Conclusions

- ✓ New modeling workflow implemented in Repsol
- Significant reduction of time spent on building the structural model compared to the traditional Pillar gridding workflow
- ✓ Improved quality of the 3D grid's cells
- ✓ In simulation, reduction of convergence problems associated to grid geometry
- ✓ Final 3D stair-step grid ready for simulation

AULT FRAMEWOR AND VBM

STRUCTURAL GRIDDI

RESULTS AND CONCLUSIONS