Deployment of a Cloud-Based Deep Learning Model for Well Log Correlation at Scale

Seth Brazell
Generating Robust Stratigraphic Frameworks

Total Wells Correlated: 9,000+
Total Tops Interpreted & QC’d: 30,000+
Total Time: 20 Days

Delaware Basin
Central Basin Platform

40 km
Scalable Solutions to Reduce Subsurface Uncertainty

How do we efficiently harness all available data to generate robust subsurface models?

- Interpreter-driven, machine-assisted solution for high-density datasets
- Propagates defined markers w/ advanced deep learning algorithm & standard correlation techniques
- Objective, repeatable, scalable
- Actively deployed in exploration and development assets

Data from 100,000s Vertical Wells

- Greater Permian
- Delaware Basin
- Central Basin Platform
- Midland Basin
Existing Approaches to Well Log Correlation

- Well log auto-correlation attempted since 1970’s

- Resurgence in interest
 - Improved computing
 - Onshore unconventional plays with 1000’s – 10,000’s of wells

- Major limitations to existing approaches
 - Computationally too intensive
 - Restricted to a defined cross-section
 - Drift with distance
 - Get ‘lost’ at faults/facies changes

- Existing approaches are too rigid…

(Lineman, 1985)

(Wheeler, 2015)
Machine Learning: algorithms that perform a specific task without explicit instructions

Deep Convolutional Neural Network Architecture

Quantitative Match Probability

6+ Million Samples
Next-Gen Correlation Tool

Universal Deep CNN Pattern Recognition Model

3D Search & Correlation Tool
Advanced Methology

Propagation Logic

- Tops & comparison distances defined by interpreter
- Incorporates standard correlation rules
- Tops do not cross
- Adheres to structure and isochore statistics
- Minimizes false positives to reduce time spent reviewing

Distance btwn wells = 4 miles
Case Study: STACK Play, Anadarko Basin

20 Manually Correlated “Seed Wells”

20 Wells Interpreted. 3.6% Data Coverage. 30 minutes
Give an Example (Define Seed Wells)

Tune Parameters, Add Seed Wells | Run ML Correlation Tool

Define Next Steps | Generate Maps

Verify

QC Cross Sections
Stratigraphic Framework Evolution

Top of Meramec Structure Maps

Seed Well Selection
- 20 Wells Correlated
- 4% Dataset Coverage
- Time 30 Minutes

1st Iteration
- 457 Wells Correlated
- 84% Dataset Coverage
- Time 9.5 Minutes

2nd Iteration
- 510 Wells Correlated
- 94% Dataset Coverage
- Time 1.7 Minutes
Machine Learning Results: 97% Accuracy
Enabling Interpreters to Focus on Complexity

Manual vs. Machine-Assisted Top of Meramec
Case Study: Summary

• Deployed a novel tool for well log correlation
 • Pattern recognition using deep neural network
 • 3D search window & traditional correlation logic
 • Incorporated SME insights

• Iterative approach yields robust & accurate correlations
 • 2 tool iterations
 • 4% to 94% dataset coverage
 • 11 minutes compute time
Leveraging AI to Enhance Reservoir Characterization

1. Standardization
2. Stratigraphic Framework
3. Petrophysical Data QC
4. Petrophysical Modeling
5. Property Analysis
6. 2D Mapping
7. Visualization & Analysis
8. Value Extraction

Data Prep

Interpretation & Analysis

Prediction

Petrophysical Data QC

Visualization & Analysis
Acknowledgments: Michael Ashby, Alex Bayeh, Marc Countiss, Drew Derenthal, Matt Gatewood, Dawn Hayes, Adam Lee, Christian Noll, Didi Ooi, Chris Savage, Preston Wahl. Thanks to Anadarko Petroleum for permission to share this material.

Thank You