GSCO2 Center for Geologic Storage of CO₂ **ILLINOIS** Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

A Novel Application of Geocellular Modeling in Lab-scale Studies of Injection-induced Seismicity

Ola Babarinde Geologist Illinois State Geological Survey (ISGS), University of Illinois.

the future is open SIS Global Forum 2019 September 17–19 Grimaldi Forum, Monaco

Background and motivation

Background:

- Recorded low-magnitude microseismic events at CO₂ and fluid injection projects (e.g. Illinois Basin Decatur project)
- To investigate the impact of flow processes on event occurrence, a large block test was conducted through collaborative effort of multi-institutes

Motivation for study:

Office of

Science

 Apply geocellular modeling to study dynamic processes observed in lab experiment and provide deeper insight to these processes

HSHIP

Center for Geologic

Storage of CO,

Presentation outline

- Background
 - Large sandstone block test design and scenarios
 - Test result
- Geocellular Modeling;
 - Block sampling and petrophysics
 - Structural and property modeling
- Modeling

.S. DEPARTMENT OF

- Dynamic modeling effort
- Coupled reservoir-geomechanics model

Center for Geologic

Storage of CO.

• Preliminary results

Office of

Science

• Summary and conclusions

the future is open

September 17–19

0

Background: Test design and scenarios

Center for Geologic

Storage of CO,

Test Design:

- Block was sawed into two halves to mimic a fracture/fault
- Boreholes include 1 main injector and 3 pore pressure monitoring ports
- Geophones were buried on block sides to detect acoustic emissions Scenarios:
- 22 stages of fluid injection was performed on the block under varying differential stress in a triaxial stress frame over 2 days

Office of

Science

1m 14.00 σ_H ↓ 2.00 4.25 Fault 28.00 σ_{h} Injector 3.00 Wellbore 28.00 Geophone Stress frame 0 the future is open eptember 17–19

1.00

Fault

Background: Test results

- Over 36,000 acoustic emissions were recorded
- Pore pressure around 1MPa did not initiate slip along the fault

Center for Geologic

Storage of CO,

the future is open

September 17–19 Grimaldi Forum, Monae 0

Schlumberger

Office of

Science

GSEA

Background: Test results

- Displacement along fault increased linearly with increased differential stress
- Pore pressure above 3.5MPa created hydraulic fracture around main injector
- Hydraulic fracture enhanced pressure communication between the injector and interface, causing a stick slip motion along the interface

Storage of CO,

. DEPARTMENT OF

Office of

Science

Schlumberg

Geocellular Modeling

Center for Geologic Storage of CO₂ the future is open

September 17–19 Grimaldi Forum, Monaco

Schlumberger

Geocellular modeling: Block sampling

- Around 320 plugs was collected along the fault surface
- RCAL was conducted on collected core plugs

Center for Geologic Storage of CO, the future is open SIS Global Forum 2019

leptember 17–19 Irimaldi Forum, Monaco

Geocellular modeling: Petrophysics

• Summary statistics of core test result

September 17–19 Grimaldi Forum, Monac

Schlumberger

Geocellular modeling: Importing core test data

- Core measurements were used to create synthetic well data/logs imported into Petrel
- Flat surfaces were created in Petrel to capture grid design, create layers, and zones

Center for Geologic Storage of CO the future is open SIS Global Forum 2019 September 17-19 Common Management

Schlumberge

0

Geocellular modeling: porosity & permeability

Y-axis

-13

X-axis

Y-axis

25 25 1270 1270 1290 1290 1290 1290 1300 1310 Pem Well logs

Geocellular modeling: Fault and Grid design

• For dynamic modeling;

Office of

Science

- ➢ Model grid was designed to be finely gridded around the fault (0.2 mm width), and
- ➤Cell size increases in multiples (0.2, 0.4,...,12.8 mm) away from the fault until cell width reaches 12.8 mm
- For coupled reservoir-geomechanics modeling;

Model grid was made uniform in order to include simulated fault in the model

Center for Geologic

Storage of CO,

Grid cell (Uniform)=12.8 x 12.8 mm (.04 x .04 ft) Total number of grid cell $\approx 10^6$

> the future is open SIS Global Forum 2019 September 17–19 Grimadif Forum, Monaco

0

Dynamic modeling

- Preliminary pressure response from dynamic modeling was used as data input for geomechanical modeling
- To geomechanically simulate second to last injection stage of the experiment, magnitude of the pressure plume was upscaled to match pressure response recorded during that stage

Center for Geologic

Storage of CO,

0

the future is open

September 17–19 Grimaldi Forum, Monac

Dynamic modeling

Material and geomechanical models

Center for Geologic

Storage of CO,

- A homogenous 3-D geomechanical model of Castlegate Sandstone was used as MEM
- Default properties of discontinuities in Petrel were used

Office of

Science

IHNH

Material	Geomechanical Property	Value
Castlegate Sandstone	Bulk Density (g/cc)	2.2
	Unconfined Compressive Strength (bar)	120
	Triaxial Compressive Strength (bar)	965
	Young's Modulus (GPa)	5
	Poisson's Ratio	0.25
	Friction Angle (deg)	37
	Dilation Angle (deg)	18
Fault	Normal Stiffness (bar/m)	40000
	Shear Stiffness (bar/m)	15000
	Cohesion (bar)	0.01
	Friction Angle (deg)	20
	Dilation Angle (deg)	10

the future is open

0

Geomechanical grid (model for Visage)

Material	Geomechanical Property	Value
er-	Bulk Density (g/cc)	2.8
, and ov ens	Young's Modulus (GPa)	7.5
nder- burde	Poisson's Ratio	0.15
e-, ul	Biot Elastic Constant	1
Sid	Porosity	0.01
	Bulk Density (g/cc)	2.8
Plate	Young's Modulus (GPa)	15
ide F	Poisson's Ratio	0.15
S	Biot Elastic Constant	1
	Porosity	0.01

Office of

Science

GSCO2 Center for Geologic Storage of CO, the future is open SIS Global Forum 2019

Geomechanical modeling (Visage case 1)

Geomechanical modeling (Visage case 2)

Visage case 2: Injection stage #21

Displacement (along fault plane) around injection well

Displacement (along fault plane) around fault

Office of

Science

the future is open

Visage case 2: Injection stage #21

Mohr circle plot 130 104 Shear stress (bar) 78 52 26 00 -00 50 100 150 200 250 Principal stress (bar)

Geomechanical condition along fault

Office of

Science

GSCO2 Center for Geologic Storage of CO, the future is open SIS Global Forum 2019 September 17–19 Grimalif Roma, Monaco

Summary and conclusions

Office of

- 3-D geocellular models of laboratory specimen are buildable in Petrel
- Results from lab experiments can be evaluated along with geocellular models to better understand dynamic processes
- Modeling result confirmed pressure changes up to 1 MPa did not cause tensile failure around the well
- Modeling result indicated pressure changes up to 3.5 MPa initiated tensile fracture around the well
- Modeling result indicates and confirms the initiation and propagation of hydraulic fracture parallel to the $\sigma_{\rm Hmax}$ direction

Center for Geologic Storage of CO

Schlumberge

0

the future is open

Future work

- Complete dynamic simulation that spans all injection stages and test period
- Re-run coupled reservoir-geomechanics model
- Conduct sensitivity study on parameters that were not measured, such as normal and shear stiffness of fault
- Calibrate geomechanical response to measurements observed post experiment

the future is open SIS Global Forum 2019

leptember 17–19 Grimaldi Forum, Monaco

Acknowledgement

This work was supported as part of the Center of Geological Storage of CO₂, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

Center for Geologic

Storage of CO.

HSH

References

Bauer, R. A., Carney, M., & Finley, R. J. (2016). Overview of microseismic response to CO2 injection into the Mt. Simon saline reservoir at the Illinois Basin-Decatur Project. International Journal of Greenhouse Gas Control, 54(1), 378–388. doi:10.1016/j.ijggc.2015.12.015

Will, R., El-Kaseeh, G., Jaques, P., Carney, M., Greenberg, S., & Finley, R. (2016). Microseismic data acquisition, processing, and event characterization at the Illinois Basin–Decatur Project. International Journal of Greenhouse Gas Control, 54, 404-420.

Oye, V., Stanchits, S., Cerasi, P., Seprodi, N., Goertz-Allman, B. P., and Bauer, R. A, (2018) Understanding the causes of fluid-induced seismicity through large block ~1m³ laboratory experiments.14th International Conference on Greenhouse Gas Technologies (GHGT-14) Proceedings.

the future is open SIS Global Forum 2019

September 17—19 Grimaldi Forum, Monaco

Project team and individual roles

Office of

Science

Scott Frailey (ISGS)- GSCO2 Center director/principal investigator/modeling advisor Sergey Stanchits (Skoltech Institute)- Experiment design and event analysis Volker Oye (NORSAR)- Microseismic theme lead, experiment design and event analysis Nick Seprodi (Schlumberger)- Laboratory manager Robert Bauer (ISGS)- Experiment design and event analysis Pierre Cerasi (SINTEF)- Experiment design and event analysis Steve Whittaker (ISGS)- Geologic advisor Dustin Sweet (TexasTech)- Geology theme lead Ed Mehnert (ISGS)- Reservoir modeling Ankit Verma (ISGS)- Reservoir modeling Shuo Yan (ISGS) – Reservoir modeling Zihe Zhao (ISGS)- Block sampling and core testing

Center for Geologic

Storage of CO,

0

the future is open

eptember 17–19

Thanks for your attention

Center for Geologic Storage of CO₂ the future is open

September 17–19 Grimaldi Forum, Monaco

Schlumberger

Questions?

GSCO2 Center for Geologic Storage of CO₂ the future is open SIS Global Forum 2019

September 17–19 Grimaldi Forum, Monaco

Schlumberger