Study the impact of improper choke design on gas production profile

Sep-2019

Field General Overview

- Nidoco Offshore gas filed discovered and operated by ENI Egypt,
 - Gas Discovered at Jul-2015
 - Production start up Aug-2015
 - Reach Max plateau Nov-2017 (1150 MMSCF/D)
 - Offshore field drilled from onshore location with deviation wells.
 - Total Number of wells 14 wells
 - Production process at Abu madi plant & EPF
 - Maximum plants capacity ~ 1200 MMscf/D

Case study

Normal workflow

- Nidoco Offshore field drilled from onshore location with deviation wells up to ~ 4000 Mt depth
- The production profiles were generated initially using 3D model approach with generic constrains such as ;
 - Plant capacity.
 - Arrival pressures.
 - Well deliverability and max draw down.
 - VLP of well completions.
 - Initial erosion rate as max production rate for each well
- The issue;
 - After drilling 10 wells the plateau declined early than expected,
 - The main concerns of the decline "which is not implemented in normal work flow";
 - 1. Choke size.
 - 2. Orifice restriction.
 - The challenges;
 - 1. Capture the above mentioned issues and re-generate a forecast profile to capturing the effect of further constrains
 - 2. Provide an optimization and improving actions to recover the production

Objective

- Study the impact of improper designed elements on the production forecast,
 - 1. Surface elements (Orifice & Choke) ?
 - The production profiles forecast assumed that there is no pressure drop in the *X*-Tree valves.
 - The pressure drop across the any surface elements is a function of gas rate, so it can't be consider a constant pressure drop
 - 1. Differentiate between the impact of each Surface element.
 - For operational actions it is important to quantify the impact of each surface element individually.

Action	ΤοοΙ
1- Update the history match and generate production forecast using generic constrain with current wells rate as control	Eclipse
2- Model the impact of surface elements (orifice & choke)	Pipesim
3- Include the impact of surface elements (choke & orifice) in eclipse (Network option)	Eclipse/Network Model
4- Study the impact of the current choke size only by removing the orifice from the network.	Eclipse

History Match

eni

History Match

7

History Match

Forecast Profile using generic Constrains

1150 MMSCF/D plateau, Current gas rate of wells for production control

Surface restrictions (Choke & Orifice)

Overview

 $\Delta P_G \propto \frac{1}{\rho_n} \left(\frac{Q_G}{A_{heam}}\right)^{\prime}$

Surface restrictions (Choke & Orifice)

Pressure drop match & pressure drop relations generations

Well	Upstream Bars	Mid stream Bars	Downstream Bars	Gas rate MSmc/D
1	149.2	109.8	85.6	1.4
2	123.8	88.7	85.4	2.68
3	115.9		85.3	2.18
4	149.9	95.8	88.3	1.95
5	162.7	119.4	87.6	2.26
6	137.4	127.6	87.8	2.20
7	125.9	98.8	87.4	2.50
8	107.3		87.8	3.56
9	121.7		87.8	5.10
10	137.7	110.6	88.1	5.90

Model the choke & orifice performance Using Nodal analysis;

- For each well generate the model of the choke and orifice.
- Match the pressure drop across each surface element per well.
- Generate VLP curve "Vertical lift performance" for each surface element with expected range of gas rates and pressures

Surface restrictions (Choke & Orifice)

Implement the surface elements to 3D model

- Generate VLP curves for each element in the surface components
- Build network model as descried below to integrate the VLP with the 3D model results

Impact of surface elements on Nidoco profile

Impact of surface elements (Choke & Orifice) well by well

Impact of surface elements (Choke & Orifice) well by well

Cont.

Surface restrictions (Choke only)

Implement the surface elements to 3D model

- Study the impact of **choke** if the orifice is removed.
 - Remove the orifice from the system
 - Build network model as descried below

Impact of current choke opening only on Field profile

Impact of current choke position only

Remove the orifice from the system

Impact of current choke position only

Remove the orifice from the system

Conclusion

- All orifice elements have a significant impact on Field profile.
- 4 wells (3,6,9, and 10 current choke position will affect the production profile and need to be upgraded and revised)

