First Digital Oil Field implementation in Kazakhstan Case Study

Bekzhan Alimbayev
Reservoir Engineer
Agenda

• Company overview
• Strategic goals
• Project roadmap
• Solution Architecture
• Project overview and workflow examples
• Project value
Company overview

- Oilfields discovery: 1989
- Establishment of the company: 1993
- First oil production: 1996
- Today's production ~ 50,000 bbl/d: Present
- Production License: 2024

Regional structural map top of PZ:
- Aksai
- Nuraly
- South Aksai
- South Akshabulak
- Central Akshabulak
- East Akshabulak
Company overview

Annual oil production (bbl)

Well count by lift types

Number of production wells in September 2019

<table>
<thead>
<tr>
<th>Type</th>
<th>Active</th>
<th>Natural flow</th>
<th>ESP</th>
<th>Rod pump</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>230</td>
<td>30</td>
<td>183</td>
<td>17</td>
</tr>
</tbody>
</table>
Strategic goals

- Monitoring and analysis of well performance to increase mean time between failures for ESP wells
- Obtain specialized tools to identify wells prone to unplanned shutdowns
- Time reduction of data gathering, processing and reporting
- Increase the quality of oil allocation due to virtual flow meter
- Obtain a single consolidated operational database that provides seamless data gathering, processing, integration and visualization
Project roadmap

Infrastructure preparation

Results
1. Modernization of metering group unit on Askhabulak, Nuraly fields to improved quality and accuracy of metering
2. Modernization of electrical networks, to improve the reliability of power supply;
3. Modernization of telecommunication system. Increased data transfer capacity.

Studies
1. Pre-project studies.
2. Analysis of processes, people and technology
3. Identification of operational problems, setting goals and objectives of DOF project;
4. Wireless coverage on the fields.

Actions
1. Drilling monitoring system

DOF project implementation

Project start
1. Implementation of the PDMS platform to create an integrated field database;
2. Implementation of remote well control system at Akshabulak;
3. Remote control of metering group unit obtained;
4. Centralized complex of automated process control system
5. Command and control centers.

Implementation
1. Visualization and Decision Support System;
2. PDMS integration with telemetry system and analytical tool.
3. Shortfall Management
4. Virtual flow meter
5. Automated Reports

Development
1. Implementation of remote well control system at Nuraly and Aksai;
2. Implementation of remote well control system at injection wells.
3. Automated workover candidates selection

Idea
1. Search of technology on the way of DOF project.

2012

2013

2014

2015

2016

2017

2018

2019
Project roadmap (DOF project implementation)

Monitoring, surveillance and analytics
Valuation dashboards, shortfall management, advanced well test analysis, report automation and reservoir surveillance and monitoring

Integration with Subsurface model
Seamless data integration from central database into subsurface geological model

Production network model
Multiphase network model in PIPESIM to optimize production

2017

Production data management
Standardization and automation of hydrocarbon allocation and centralization of production and operational data into single common database

2020

Well models
Creation of ~220 well models with automated calibration workflow. Models results used for ESP monitoring and surveillance, virtual flow metering

PDMS integration with SCADA
Seamless integration of real time data from SCADA directly into PDMS to minimize human factor
Solution Architecture

<table>
<thead>
<tr>
<th>Source</th>
<th>Local telemechanics (automated)</th>
<th>Data storage</th>
<th>Online monitoring</th>
<th>Platforms and software</th>
<th>Monitoring of integrated system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wells</td>
<td></td>
<td>Control stations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metering group unit</td>
<td></td>
<td>Hardware blocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing units and facilities</td>
<td></td>
<td>Dispatchers room</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Data transfer**
- **Control**
- **Visualization**
Unified Integrated Data Workspace and Team Collaboration

Operational Data Center (Field)
- Response to shutdowns
- Data Quality Check
- Making Report

Center for analysis and planning (office)
- Data Analysis, Analytics
- Production planning
- Recommendations on workovers

Field equipment

Field operations data

AVOCET
- Centralized field-based database
- Production data calculation
- Oil allocation
- Autocalibration of well models
- Virtual flow meter

Web Portal
- Web dashboards
- Automatic Web-reports

Reservoir Surveillance / 3D Simulation

Top management

Business decision-making
Web-reporting in One Click

Time-saving up to 600 working days per year

List of reports:
- Daily: 16
- Monthly: 12

Example: Daily production report
Web-dashboards: Asset Overview

KPIs: (plan/actual)
- Oil production
- Oil Sales
- Water Production
- Gas Production
- Water Injection
- Polymer Injection

Well stock by field

Wells below target

Production shortfall
Web-dashboards: Well Test Analysis

ABC diagram

Well test summary by wells
Web-dashboards: Well performance analysis (ESP)

Virtual flow meter

1 click access to well model

Pump performance curves

Pump operation diagnostic diagram

Nodal analysis
Web-dashboards: Downtime shortfall analysis

Mean time between failures (MTBF) in ESP wells increased up to 3%
A unique workflow to identify wells prone to unplanned shutdowns

1. Nodal analysis
 - Well identification with decreasing outflow
 - Accuracy: 67%
 - Reliability: 14%

2. Pump operation
 - Increase model reliability based on pump operations history
 - Accuracy: 50%
 - Reliability: 20%

3. Models
 - Further increase in model reliability using well model results
 - Accuracy: 50%
 - Reliability: 43%

$\sim30\text{Kbbbl}$

\sim1.6 M

A unique workflow to identify wells prone to unplanned shutdowns in order to reduce oil production losses.
Mean time between failures (MTBF) in ESP wells increased up to 3%
Potential additional production up to 30K barrels of oil ($1.6 mln) due to unique workflow

Time reduction of "quality" data gathering, processing and reporting
Increase the quality of oil allocation due to virtual flow meter

A single consolidated field-based database obtained
Automation of workflow – (time-saving up to 600 working days per year)
Increased the value of management decisions
Thank you!