Pseudo Dry Gas System

Steady state and transient analysis

September 2019

www.**advisian**.com

www.intecsea.com

Stranded Gas – Simplified Overview

Tie Back Distance km

Objective

• Present an innovative Pseudo Dry Gas PDG separation technology to demonstrate that tie backs far in excess of the current threshold distance can be achieved.

Underlying Problem

Fixed Flowrate

Fixed Diameter

More

- Gas pipelines diameter choice is a compromise between lowest well back pressure Vs operability driven by liquids
- More distance = ٠ Greater Compromise = Greater Back Pressure = Less Revenue = Lower NPV = **Stranded Gas Reserves**

Concept

- Compact Installed as a pipeline in-line stru-
- Passive no moving parts or consumables
- Piggable

Configuration

- Multiple PDG units are installed in-line and are piggable. Liquids are removed via small diameter pipe and small single phase centrifugal pumps kW
- Power, telecommunications cables, hydrate inhibitor such as MEG and other service lines are deployed by means of an umbilical.

Case Study

- Trunkline; 170km long
- WD 0-1800m, no escarpment
- Two manifolds and 9 satellite wells

- 6 PDG units required
- Efficiency linked to fluid conditions
- Last PDG 80km from shore

Onshore Onshore DESIGN REQUIREMENTS Design Flow Rate = 880 MMscfd Turndown Rate = 380 MMscfd Arrival Pressure Early Life = 60 bara Arrival Pressure Late Life = 30 bara LGR = 12 bbl/MMscf

• **55 to 80 bar** reduction in wellhead back pressure across design cases

PDGS Enabled Tie-back Hydraulics

PDGS Gas Condensate Behaviour

- Analogues of subsea gas systems have shown that the condensates continue to drop out of the gas after it reaches ambient temperatures due to pressure loss
- The drop out slows down / stops once the ambient temperature increases due to pipeline moving into shallower waters

Figure – Typical Liquid drop out behaviour

Operational Performance

OLGA 2017 – HD module

- Dynamic Steady State
- Turndown
- Ramp-up
- Shutdown
- Restart

Turndown

Lower Minimum Stable Flow

Wet Gas Pipeline Minimum Stable Flow – 380 MMscfd

Flow Rate MMscfd	Wet Gas Total Liquid Content m ³	PDG Total Liquid Content m ³
880	2053	264
250	10857	258
100	42579	5183*

* after 8 months operation

Shutdown

Liquid drains back to the separators

Liquid pumped back to shore

Extreme shutdown ~5000m³ can be drained But time dependent:

- Pump size
- Liquid drainage to separator
- Gas sweeping to speed up drainage

Ramp-Up & Restart

Low liquid arrival rates onshore – no slug catcher needed

Development Plan

2018/19

- Kicked off a techno-economic study for the Oil and Gas Technology Centre (OGTC) to assess the potential benefits of the PDG technology; within their portfolio of subsea initiatives (marginal, long distance, deep water)
- Testing of a prototype in lab conditions (Cranfield University (UK))
- Open to work with other Operators/ Organisations
 - Proof of concept studies
 - Invitations to participate in peer reviews

Questions

University of Strathclyde

The Oil & Gas Technology Centre 米

lee.thomas@intecsea.com terry.wood@intecsea.com