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Agenda

loT provides a novel source high fidelity, high-resolution data
enabling us to rapidly and automatically detect changes to
operational conditions. Update oil and gas data scientists are
using this data to derive new insights regarding equipment
health and asset performance.

Developers are using GCP native stack to build applications
that monitor drilling, completions, and facility activities
providing real-time performance measurement and advisory
control recommendations to field operators.
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By 2040, global
energy demand is
set to grow by 25%

IEA, World Energy Outlook, 2018

Pl

How do we plan to keep up?
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Digital Solutions

Exploration
Identifying sweet spots where well performance is high and land entry
costs are low can generate significant value.

Development
Selecting the optimal well design - which involves choices in numerous

areas such as completion size and well spacing - requires predicting the
performance for each candidate design.

Operations - Fleet Performance Optimization
Monitoring and understanding asset behavior through the life-cycle of
construction to production.
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Real-Time Operations

Depth is equal to
8 Eiffel Towers

@ Improve Safety and Environmental Performance

Ground water
Optimize Operations & Standardize Repetitive

- Multiple layers of steel encased
Ta Sks in cement protect ground water

o

Reduce Costs

Protective steel casing

@® Process real-time streaming log data & other
non-streaming data
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® Derive operational KPIs at very high $ ¢ W
resolution ,
Shale fractures; 1Imm wide
o . . . . Hydraulic fracturing occurs
® Runs online 24/7 with continuous monitoring ata depth of approximately
and uptime

6 Goog Ie C I Ou d Source: Adapted with Permission from Texas Oil & Natural Gas Association (© 2010)
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GCP Enabled Solution
Adoption Benefits

Accelerating Speed to Market

i,

Highly Scalable

Ease of Operations Reliable Services Insights
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Cloud First

e Built Proof of Concept using existing data
collection infrastructure

e Enabled rapid iterations - fail fast with
lower risk

e Allows Digital twin applications

Working Backwards Towards the Solution
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loT Blueprint: Fleet Performance Optimization on GCP

Architecture: Internet of Things > Sensor stream ingest and processing
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loT Blueprint: Time Series Data Processing & ML Pipeline

Architecture: Internet of Things > Time Series Data Processing & ML Pipeline
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loT Blueprint: Data Processing Pipeline

Architecture: Internet of Things > Time Series Data Processing & ML Pipeline
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Why Data in both BigQuery and OpenTSDB/Bigtable?

Trend of the last 24 months
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=% Time Series DBMS

-0~ Graph DBMS

& Document stores

-+ Key-value stores

=¥ Search engines

-8 Object oriented DBMS
RDF stores

-+~ Native XML DBMS

-+~ Wide column stores

=& Multivalue DBMS

-®- Relational DBMS



loT Blueprint: Data Processing Pipeline Key Takeaways

loT Analytics benefit from strengths of BigQuery as well as
Time Series Interfaces

Focus on the Data, not the Infrastructure - lean on scalable
managed services like Cloud Storage, Pub/Sub, Dataflow,

BigQuery and Bigtable

Design batch and streaming pipelines using near identical
Apache Beam pipeline code, running on Cloud Dataflow
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loT Blueprint: Machine Learning

Architecture: Internet of Things > Time Series Data Processing & ML Pipeline

Streaming (Online Data) Batch (Historical Data)
E Upstream
oSl . Producer L oSl .
Time Series Database Vendor Integration loT Field Devices Time Series Database

’
) Google Cloud Platform 9 Cloud e Cloud Q Stackdriver

Pub/Sub Storage

i \ /T T T T T T T T T T T T T T T e T T T s s s s s s ~
! | i h
0 ML Trainin |
! 6 Cloud @ - raning e : Cloud Cloud |
i Composer Pipeline ] ) i . N
| : ; Composer Dataflow : s S
AY ’ 1 N / \
Bl N P | s Grafana 1
““““““““““““““““ 1 Grafana !
1 1 Visualizations !
1
pE T TR EEeeeREeR0CoReooERoCDIReooReORERE0o==2C00 SN 1 1
’ \ 1 !
| 1 I 1
1
e N | Kubernetes Cloud ®® BioQuery : — Q Data Studio :
[ : | Engine Bigtable 0 1 !
1 1 ! 1
| I — | — 1 1
| @ ML Serving @ Kubernetes | 1 i i ! :
1
! Pipeline Engine i | I i | Al i
: : : . OpenTSDB 6 Cloud : : Notebooks :
‘o , \ Storage I 3 !
———————————————————————————————— \ ’ \ ’
N 7 ~ 4

& Google Cloud



O01Read

Prepare and downsample telemetry data to
BigQuery, ie one year across equip telemetry
tags

02 Pre-Process

A chain of BigQuery SQL transforms are applied
to the data, after which it is stored in Cloud
Storage

03 Train

Using the processed data, Al Platform is used to
submit a training job, and the weights are stored
in Cloud Storage
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loT Blueprint: ML Training Pipeline - Driven via Cloud Composer

04 Batch Predict

With trained weights and hyper parameters, Al
Platform is used to submit a batch prediction job

05 Writeback
The results are stored in GCS, and are then
transferred to BigQuery

06 Analyze

The BigQuery results are accessed via Al
Notebooks for visualization and analysis

With trained weights and hyper parameters,
deploys a Kubernetes container for live
prediction



01 Read

The tag data is read in batch format from
OpenTSDB

02 Pre-Process

The data is formatted and prepared for ML
prediction input

03 Predict

The saved model weights generated by the ML
training pipeline are used in local mode for
prediction
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loT Blueprint: ML Online Prediction Pipeline - via Kubernetes

The prediction values and scores are separated,
and unpivoted

05 Writeback

The results are written to PubSub, from which
they feed back into OpenTSDB and BigQuery



loT Blueprint: ML Pipeline Key Takeaways

Focus on the ML model & results, not the Infrastructure - lean
on scalable managed services like Cloud Composer, Al

Platform, and Google Kubernetes Engine

Consider build vs buy tradeoffs between a home grown
versus off the shelf anomaly detection workflow

Take advantage of existing historian telemetry collection -
shift towards Cloud loT direct integration when ready
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loT Blueprint
Future Direction

01 Further Cloud Automation

O 2 Automated Edge Model and App Deployment

O 3 Federated Learning

£Y Google Cloud



L Thank you

Questions?
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