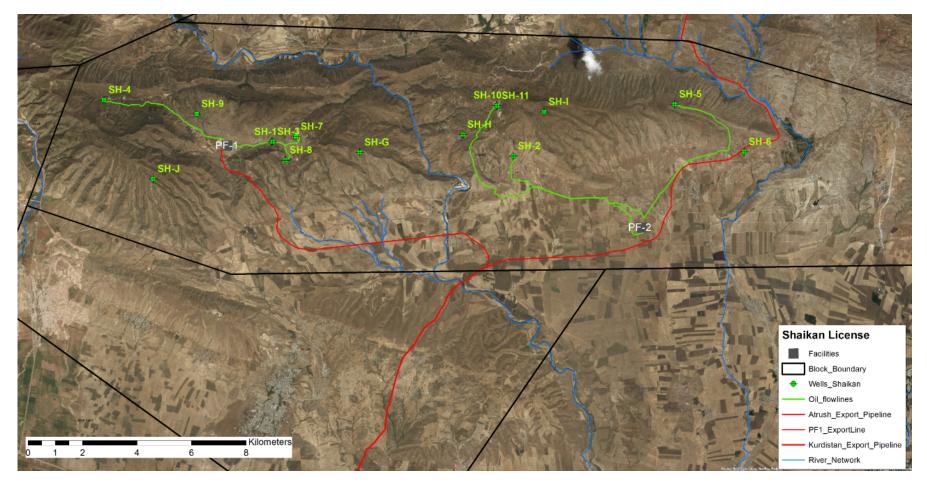
Gulf Keystone Petroleum

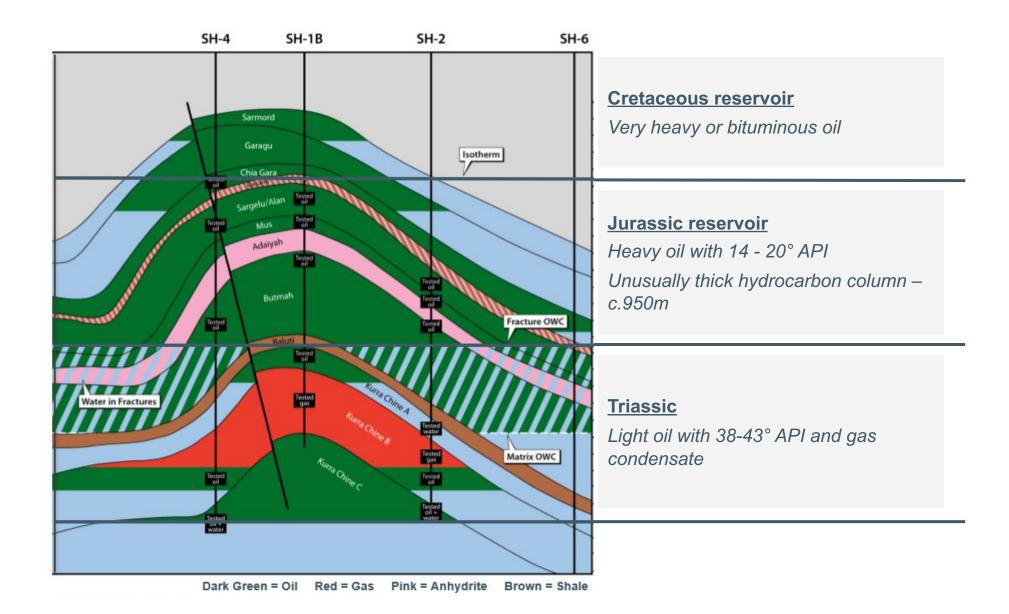
Using Intersect and DELFI to make development decisions quickly September 2019

The Shaikan Field


Field Overview

- Located c.60km north-west of Erbil at the north-west end of the Zagros Fold-belt
- Giant fractured carbonate oil field currently producing medium/heavy oil from Jurassic reservoir
- One of the largest fields in Kurdistan by reserves and production
- Development plan
 - Current production from Jurassic only
 - Only ~10% of ultimate reserves produced to date
 - Phased future development with further Jurassic wells, artificial lift, plant expansion and gas reinjection
 - Pilot development of Triassic reservoirs

Key Facts


- Gulf Keystone interest: 80%
- Partner: MOL 20%
- Discovered: August 2009
- Production start: July 2013
- STOIIP (Jurassic): ~3500 MMstb
- •2P reserves: 591 MMstb*
- Reservoir depth (Jurassic): 300 1450 mTVDSS
- **Geology:** Fractured carbonate (limestone, dolomite, anhydrite)
- Production mechanism: primary depletion
- **Surface facilities:** PF-1 and PF-2 processing plants, with pipeline export
- Current production rate: ~40 Mstb/d from 9 wells
- Cumulative oil recovery to date: 64 MMstb

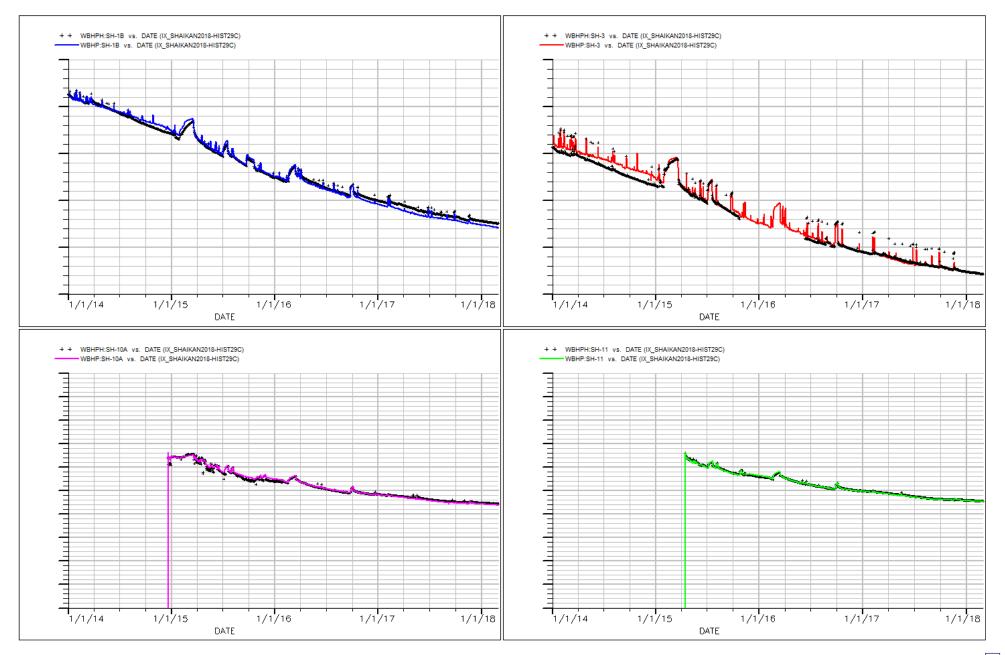
Shaikan Field Satellite Image

- Two production facilities, each with a nameplate capacity of 20 Mstb/d
- Nine production wells, without artificial lift
- PF-2 pipeline operational since July 2018
- PF-1 pipeline recently completed

Subsurface Schematic Cross-Section

GULF KEYSTONE

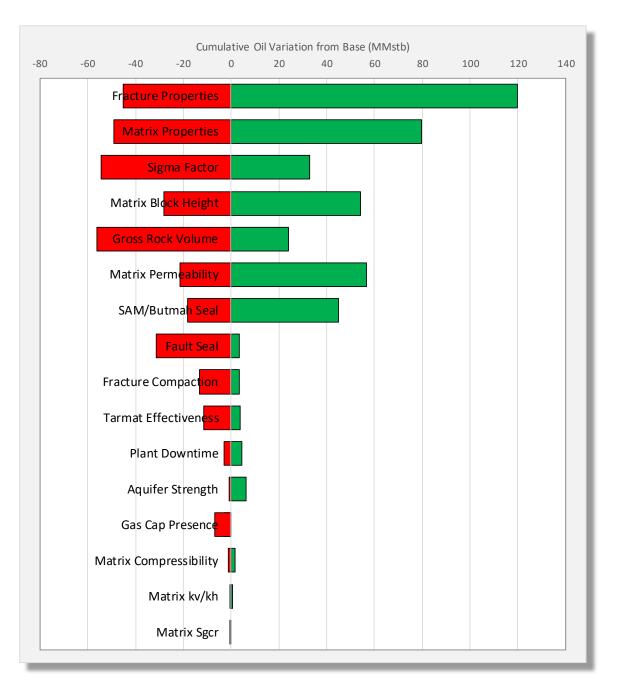
Reservoir Modelling Challenges


- Full-field geological model of Upper and Lower Jurassic reservoir recently constructed in PETREL, incorporating matrix properties from log and core, and fracture properties upscaled from fine-scale Discrete Fracture Network (DFN) model
- Fine layering scheme required to preserve heterogeneity
- Static geological model grid and layering preserved in associated dynamic simulation model
- Several elements combine to result in a complex simulation model:
 - **Dual porosity** formulation required to fully capture fracture and oil recovery processes
 - Total cell count (matrix + fractures) of over 2 million cells, of which about 0.5 million are active
 - Compositional gradient requires "API Tracking" option in Black Oil fluid model
 - Low fracture porosity (average <0.5%)
 - High permeability contrast (<1 mD matrix vs >1000 mD fractures)
 - Detailed six-year production history with daily records of BHP for nine wells
 - Introduction of gas re-injection results in very rapid saturation changes in fracture cells
- Full history-match simulation run takes 6 7 hours in ECLIPSE...

Improving Simulation Run Times

- Reliable history-match was required to correctly "calibrate" the Shaikan simulation model before it could be used for production forecasting and development planning
- Long simulation run times encountered with ECLIPSE made history-matching exercise time-consuming and disjointed
- Predictive simulations with gas re-injection presented additional numerical problems in ECLIPSE and extended run times further
- Alternative simulators were considered and tested in-house before ultimately choosing INTERSECT as most suitable software for simulation for all Shaikan models
 - Run times reduced by a factor of 4 5
 - ECLIPSE results exactly reproduced by INTERSECT
 - Almost all ECLIPSE functionality available in INTERSECT
 - MIGRATOR allows existing ECLIPSE models to be easily converted to INTERSECT
 - INTERSECT output available in ECLIPSE format for post-processing

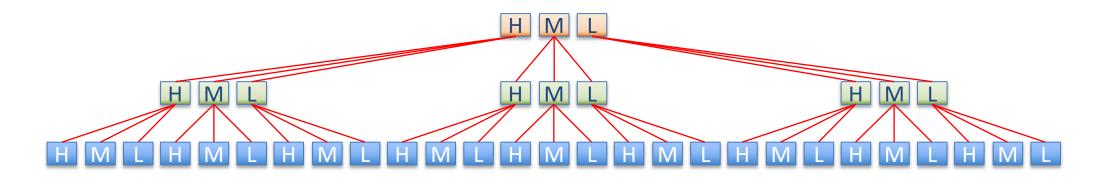
Example Well BHP History-Match Plots



GULF KEYSTONE

Uncertainty Study

- Use of INTERSECT allowed a good deterministic history-match to be achieved to all wells within a reasonable timeframe, and the prior rigorous calibration of the DFN model meant only minor global tuning of reservoir properties was required to achieve the match
- However, the manual process of history-matching yields only one non-unique solution. Clearly, with only nine wells producing from such a large field, and only 10% of reserves recovered, there remains significant uncertainty in any subsequent production forecast derived from this single deterministic model
- Hence an "Uncertainty Study" was proposed with a number of objectives:
 - To identify the most important uncertainties and risks
 - To capture subsurface uncertainty in Shaikan static and dynamic models
 - To bracket probabilistically the STOIIP and reserves ranges
 - To generate a number of equi-probable history-matched simulation models
 - To derive probabilistic production forecasts for current Field Development Plan
 - To identify representative P90 / P50 / P10 forecast cases for further optimisation


Sensitivity Analysis "Tornado Chart"

GULF KEYSTONE

Experimental Design

• To examine all possible combinations of all independent uncertainties would require a "full factorial" approach. Example for 3 variables and 27 combinations:

- Choosing seven independent variables, each with high / mid / low values, would require 2187 separate simulation runs!
- Experimental Design adopts a "fractional factorial" approach to cover the full uncertainty space with the minimum number of combinations
- The "Box-Behnken" design requires only 57 simulation runs for seven variables

"Box-Behnken" Design Tables

Factors

4 Factors Run

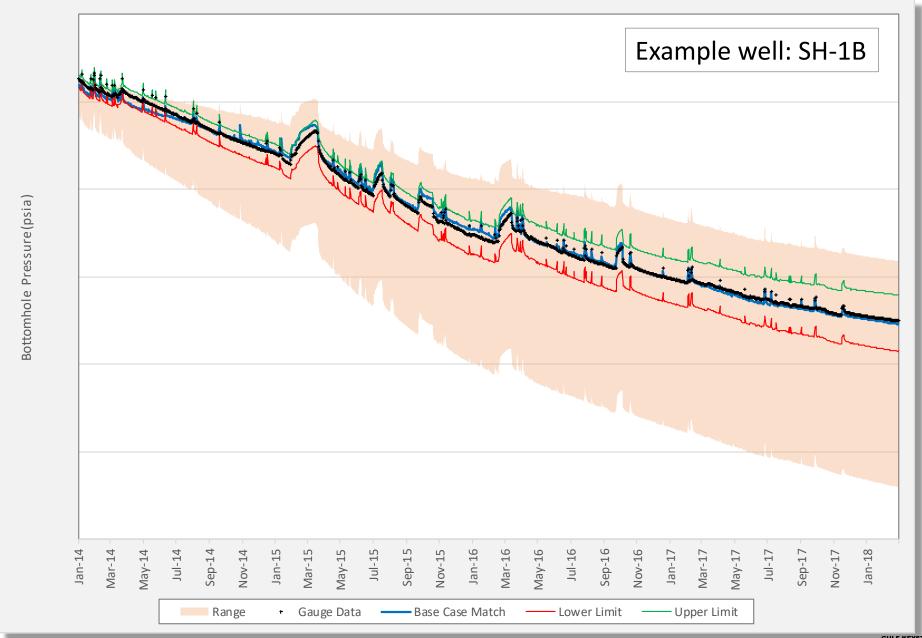
Block

Run	А	В	С	
1	-1	-1	0	
2	1	-1	0	
3	-1	1	0	
4	1	1	0	
5	0	-1	-1	
6	0	1	-1	
7	0	-1	1	
8	0	1	1	
9	-1	0	-1	
10	1	0	-1	
11	-1	0	1	
12	1	0	1	
13	0	0	0	
	1 2 3 4 5 6 7 8 9 10 11 12	1 -1 2 1 3 -1 4 1 5 0 6 0 7 0 8 0 9 -1 10 1 11 -1 12 1	-1 -1 1 -1 2 1 3 -1 3 -1 4 1 5 0 6 0 7 0 8 0 9 -1 10 1 11 -1 12 1	-1 -1 0 2 1 -1 0 3 -1 1 0 4 1 1 0 5 0 -1 -1 6 0 1 -1 7 0 -1 1 9 -1 0 -1 10 1 0 -1 10 1 0 -1 11 -1 0 1 12 1 0 1

				_		
A	В	С	D		Block	
-1	-1	0	0			
1	-1	0	0		1	
-1	1	0	0		1	
1	1	0	0			
-1	0	-1	0			
1	0	-1	0		2	
-1	0	1	0		2	
1	0	1	0			
-1	0	0	-1			
1	0	0	-1		3	
-1	0	0	1		5	
1	0	0	1			
0	-1	-1	0			
0	1	-1	0		4	
0	-1	1	0		4	
0	1	1	0			
0	-1	0	-1			
0	1	0	-1		5	
0	-1	0	1		э	
0	1	0	1			
0	0	-1	-1			
0	0	1	-1		6	
0	0	-1	1		0	
0	0	1	1			
0	0	0	0			
				-	7	
						Г

Block	Run	А	В	с	D	E
	1	-1	-1	0	0	0
1	2	1	-1	0	0	0
1	3	-1	1	0	0	0
	4	1	1	0	0	0
	5	-1	0	-1	0	0
2	6	1	0	-1	0	0
2	7	-1	0	1	0	0
	8	1	0	1	0	0
	9	-1	0	0	-1	0
3	10	1	0	0	-1	0
5	11	-1	0	0	1	0
	12	1	0	0	1	0
	13	-1	0	0	0	-1
4	14	1	0	0	0	-1
4	15	-1	0	0	0	1
	16	1	0	0	0	1
	17	0	-1	-1	0	0
-	18	0	1	-1	0	0
5	19	0	-1	1	0	0
	20	0	1	1	0	0
	21	0	-1	0	-1	0
	22	0	1	0	-1	0
6	23	0	-1	0	1	0
	24	0	1	0	1	0
	25	0	-1	0	0	-1
-	26	0	1	0	0	-1
7	27	0	-1	0	0	1
	28	0	1	0	0	1
	29	0	0	-1	-1	0
	30	0	0	1	-1	0
8	31	0	0	-1	1	0
	32	0	0	1	1	0
	33	0	0	-1	0	-1
	34	0	0	1	0	-1
9	35		-1	0	1	
	36	0	0	1	0	1
	37	0	0	0	-1	-1
	38	0	0	0	1	-1
10	39	0	0	0	-1	1
	40	0	0	0	1	1
-	41	0	0	0	0	0

5 Factors

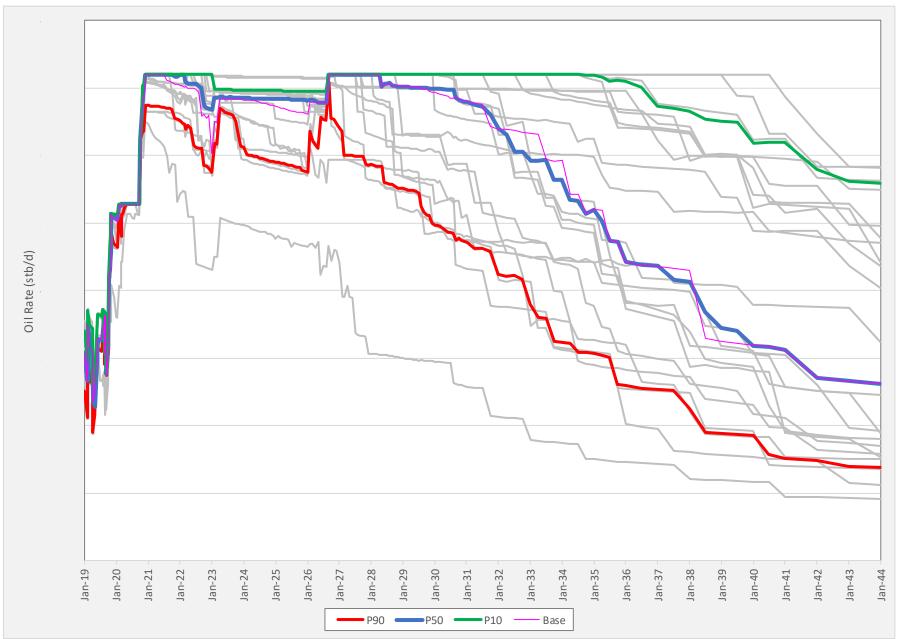

Block	Run	A	В	С	D	E	F	
	1	-1	-1	0	-1	0	0	
	2	1	-1	0	-1	0	0	
	3	-1	1	0	-1	0	0	
1	4	1	1	0	-1	0	0	
1	5	-1	-1	0	1	0	0	
	6	1	-1	0	1	0	0	
	7	-1	1	0	1	0	0	
	8	1	1	0	1	0	0	
	9	0	-1	-1	0	-1	0	
	10	0	1	-1	0	-1	0	
	11	0	-1	1	0	-1	0	
2	12	0	1	1	0	-1	0	
2 ×	13	0	-1	-1	0	1	0	
	14	0	1	-1	0	1	0	
	15	0	-1	1	0	1	0	
	16	0	1	1	0	1	0	
	17	0	0	-1	-1	0	-1	
	18	0	0	1	-1	0	-1	
	19	0	0	-1	1	0	-1	
	20	0	0	1	1	0	-1	
3	21	0	0	-1	-1	0	1	
	22	0	0	1	-1	0	1	
	23	0	0	-1	1	0	1	
	24	0	0	1	1	0	1	
	25	-1	0	0	-1	-1	0	
	26	1	0	0	-1	-1	0	
	27	-1	0	0	1	-1	0	
	28	1	0	0	1	-1	0	
4	29	-1	0	0	-1	1	0	
	30	1	0	0	-1	1	0	
	31	-1	0	0	1	1	0	
	32	1	0	0	1	1	0	
	33	0	-1	0	0	-1	-1	
	34	0	1	0	0	-1	-1	
	35	0	-1	0	0	1	-1	
_	36	0	1	0	0	1	-1	
5	37	0	-1	0	0	-1	1	
	38	0	1	0	0	-1	1	
	39	0	-1	0	0	1	1	
	40	0	1	0	0	1	1	
	41	-1	0	-1	0	0	-1	
	42	1	0	-1	0	0	-1	
	43	-1	0	1	0	0	-1	
	44	1	0	1	0	0	-1	
6	45	-1	0	-1	0	0	1	
		1	0	-1	0	0	1	
	46							
	46 47	-1	0	1	0	0	1	
				1	0	0	1	

6 Factors

7 Factors

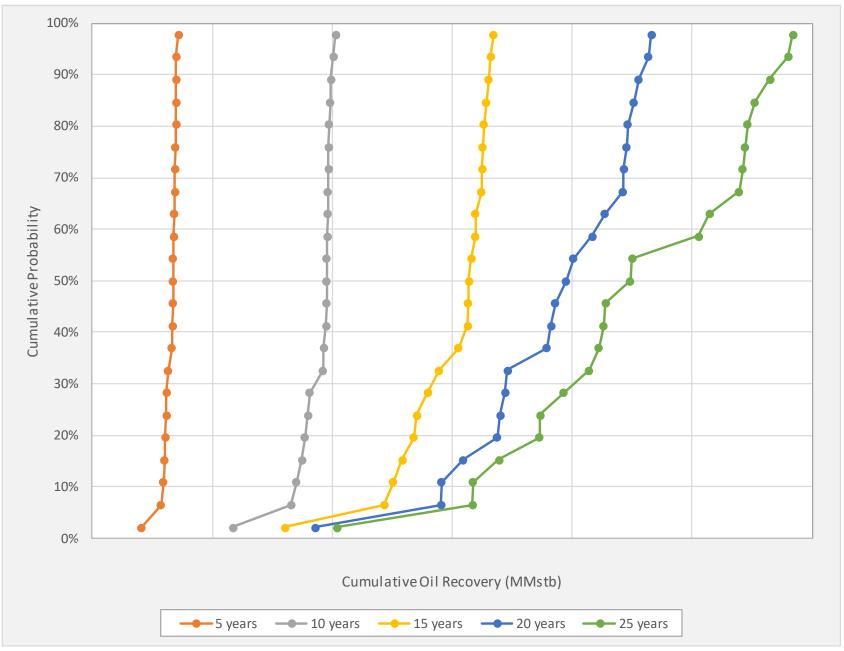
Block	Run	А	в	С	D	Е	F	G	
	1	0	0	0	-1	-1	-1	0	
	2	0	0	0	1	-1	-1	0	
	3	0	0	0	-1	1	-1	0	
1	4	0	0	0	1	1	-1	0	
	5	0	0	0	-1	-1	1	0	
	6	0	0	0	1	-1	1	0	
	7	0	0	0	-1 1	1	1	0	
	8	0	0	0		1		0	
	9 10	-1 1	0	0	0	0	-1 -1	-1 -1	
	10	-1	0	0	0	0	-1	-1	
	11	1	0	0	0	0	1	-1	
2	13	-1	0	0	0	0		1	
	13	1	0	0	0	0	-1	1	
	14		0		0		-1 1	1	
	15	-1 1	0	0	0	0	1	1	
	10	0	-1	0	0	-1	0	-1	
	17	0	-1	0	0	-1	0	-1	
	10	0	-1	0	0	1	0	-1	
	20	0	1	0	0	1	0	-1	
3	21	0	-1	0	0	-1	0	1	
	22	0	1	0	0	-1	0	1	
	23	0	-1	0	0	1	0	1	
	24	0	1	0	0	1	0	1	
	25	-1	-1	0	-1	0	0	0	
	26	1	-1	0	-1	0	0	0	
	27	-1	1	0	-1	0	0	0	
	28	1	1	0	-1	0	0	0	
4	29	-1	-1	0	1	0	0	0	
	30	1	-1	0	1	0	0	0	
	31	-1	1	0	1	0	0	0	
	32	1	1	0	1	0	0	0	
	33	0	0	-1	-1	0	0	-1	
	34	0	0	1	-1	0	0	-1	
	35	0	0	-1	1	0	0	-1	
5	36	0	0	1	1	0	0	-1	
5	37	0	0	-1	-1	0	0	1	
	38	0	0	1	-1	0	0	1	
	39	0	0	-1	1	0	0	1	
	40	0	0	1	1	0	0	1	
	41	-1	0	-1	0	-1	0	0	
	42	1	0	-1	0	-1	0	0	
	43	-1	0	1	0	-1	0	0	
6	44	1	0	1	0	-1	0	0	
	45	-1	0	-1	0	1	0	0	
	46	1	0	-1	0	1	0	0	
	47	-1	0	1	0	1	0	0	
	48	1	0	1	0	1	0	0	
	49	0	-1	-1	0	0	-1	0	
	50	0	1	-1	0	0	-1	0	
7	51	0	-1	1	0	0	-1	0	
	52	0	1	1	0	0	-1	0	
	53 54	0	-1 1	-1 -1	0	0	1	0	
	54 55	0	-1	-1 1	0	0	1	0	
	55	0	-1 1	1	0	0	1	0	
	50	0	1	1	0	0	1	0	EYSTO

Filtering "Box-Behnken" Cases via History-Match



GULF KEYSTONE

Uncertainty Study Summary


- 1. Identify 16 key reservoir uncertainties and assign high / mid / low values (or scenarios) to each variable
- 2. Run "sensitivity analysis" of predictive simulations with each variable set to its low & high value in turn
- 3. Rank variables in "tornado chart" according to the impact of their uncertainty on ultimate oil recovery, and select the top seven
- 4. Use "Box-Behnken" experimental design approach to define 57 fractional-factorial cases to cover entire uncertainty space
- 5. Run history-match simulations for all 57 cases and filter the cases according to an overall "tolerance" on the BHP match for each well
- 6. Total of 23 cases were within tolerance for all nine wells
- Full 25 year production forecasts simulated for all 23 filtered cases, both with and without gas re-injection, giving total of **46 simulation runs**
- Each predictive simulation takes 10 12 hours in INTERSECT using 16 processors on a single high-spec workstation
- **DELFI cloud computing service** used to complete all 46 simulations within a few days, meeting study objectives and **achieving delivery within project deadline**

Production Forecasts for 23 Filtered Cases

GULF KEYSTONE PETROLEUM LTD.

S-Curves for Cumulative Oil Recovery

Conclusions and Further Work

- 1. Excellent history-match to well performance in large fractured carbonate oil field achieved, with crucial element being fracture properties upscaled from DFN model.
- 2. Non-unique deterministic solution and early production stage dictated that a probabilistic approach to production forecasting should be adopted.
- 3. Sensitivity Analysis allowed the key reservoir uncertainties to be identified and ranked.
- 4. Experimental Design techniques allowed the number of possible combinations of uncertainty variables (and hence simulation runs required) to be minimized in a fractional-factorial design.
- 5. Filtering of resulting simulation output allowed only adequately matched cases to be passed for predictive simulation.
- 6. Final set of 23 matched cases define range of valid production forecasts and allowed synthetic P90 / P50 / P10 profiles to be derived.
- 7. Selected cases will now be used to optimize and refine the drilling programme in the Shaikan Field Development Plan.
- 8. INTERSECT simulator and DELFI cloud computing service were **essential** in enabling large number of complex simulation runs to be completed in a reasonable timeframe, and the study results to be delivered on time.

Thank you

1 D

ALL DE

Column and Martin Party

IL ZIZINA DISTURBU