Fine scale modeling of carbonate gas condensate field using high resolution reservoir simulator

Khakim Baigazin Reservoir Development Manager Karachaganak Petroleum Operating

September 13–15 Le Palais des Congrès de Paris

GAS CONDENSATE FIELD OVERVIEW

- Giant gas condensate field located in West Kazakhstan
- Area of 280 km²
- Discovered in 1979
- Production started in 1984
- Complex field:
 - Fluid compositional gradient
 - Fractures
 - High heterogeneity
- Partners of the field: ENI, Shell, Chevron, Lukoil, and KMG

FINE SCALE MODELLING & INTERSECT TESTING

Aims & Objectives

- Test possible benefit of finer scale model (X/Y refinement) to better capture the heterogeneity of the field
- Assess the speed-up of INTERSECT versus ECLIPSE
- Assess the requirement for KPO to migrate to a faster reservoir simulator for next model build

Methodology

- Fine scale model built from refined coarse model
- INTERSECT testing done by Schlumberger to assess
 - If INTERSECT could replicate results from ECLIPSE
 - Assess runtime benefit
- Fine scale model run using ECLIPSE to assess
 - Impact on History match with different degree of heterogeneity in fine scale model

WHY REFINE IN X/Y DIMENSION – LATERAL HETEROGENEITY

- Sector modelling studies with refinement in Z direction
 - Resulted in very poor connectivity.
 - Low permeability cells (150m in XY) create "large slabs" that have very poor vertical connectivity
 - Flow has difficulty to find its way around
- This is opposite from the reality as it is clearly evident in Karachaganak from pressure and production data
- Lateral heterogeneity examples and disadvantages of the current grid dimensions are presented in the next slides

RDS

Karachaganak

Fine Scale Model

Karachaganak

WHY REFINE IN X/Y DIMENSION – WATER PRODUCTION

Well 2389 water production through high permeability zones:

- Most likely through high permeability fractures and vugs
- Less likely is coning through matrix (a bottom water drive)

WHY REFINE IN X/Y DIMENSION – WATER PRODUCTION

• Well 9189: water production is most likely through fractures

IMPROVING WATER CUT MATCH FOR WELLS >5% WCUT AND GOR

The wells with certain threshold water cut were matched.

This was done in ECLIPSE using:

- 1) Inclined 'pipes' were used to represent some form of conduit from aquifer to well.
- 2) The same approach was used as done to improve the GOR match where the pipes were inclined to be parallel to clinoform orientation
- 3) Enhancement of permeability within the 'pipe' was done through adding a set constant value of permeability to every grid cell in the pipe (for continuity of the flow)
- 4) PI multipliers added to cells that connect to pipes to represent fractures and to improve match of PLT

IMPROVING WATER CUT MATCH FOR WELLS >5% WCUT AND GOR

MODEL BUILD METHODOLOGY

- Static model was refined from 150x150 to 50x50
- The Z direction dimensions remained the same
- Comparison of fluid in place
 - HM (official)
 - HM 50x50m grid
 - Fluid in place is reproduced
- Permeability distribution replicates coarse scale model
- Active cells
 - Coarse Model = 315,000
 - Fine Model = 2,800,000 (~9x bigger)

COARSE

Layer 25
Pressure distribution at end of history

Models responding in similar manner

FINE GRID RESULTS HM

Field Oil Production Rate

Field Gas Production Rate

SIMULATION TIME HM MODEL ECLIPSE – INTERSECT (IN HOURS) IN 32 & 64 WAY PARALLEL

COARSE & FINE GRID RESULTS HM + FORECAST

SIMULATION TIME HM + FORECAST MODEL ECLIPSE – INTERSECT (IN HOURS) IN 64 WAY PARALLEL

ECLIPSE & INTERSECT FORECAST CASE COMPARISON

CONCLUSION

- INTERSECT helps to:
 - Reduce numerical dispersion related grid cell size
 - Better capture complex reservoir heterogeneity
 - Reduce 'artificial' tweaks to model when history matching
 - Accurately model fluid behavior inside reservoir including miscibility
 - Capture NW effects
 - More accurately predict water & gas breakthrough
 - KPO purchased INTERSECT recently
- INTERSECT enables to:
 - Run complex & high resolution models within acceptable timeframe
 - Seamless integration with Petrel
 - Flexible field management tool
 - Integration with surface network simulators

THANK YOU! QUESTIONS?