Applying Machine Learning and GPM for Gaining Efficiency and Improved Predictability on the Cheviot Asset

Paul Armitage
Subsurface Manager

Schlumberger Digital Forum
Luzern, 21st September 2022
Acknowledgements

The real workers:

- *Alpha Petroleum*. Iyior Abumere, Penny Milner
- *Schlumberger*. Ammar Ahmad, Sergio Courtade, Klaus Eder, Sonat Kaya

Thanks to the Management of Alpha Petroleum for permission to attend and present.
Outline

1. The Cheviot Development Project
2. Current GeoModelling Workflows
3. Study Objectives
4. ML Workflow
5. Results
7. Next Steps
Cheviot Field Overview

- Redevelopment of the Emerald Oil Field (renamed Cheviot)
- Conventional Oil
- Reservoir Depth around 5500 ft
- Excellent Jurassic Reservoir with 25 to 30% Porosity
- High Water Cut Development
Cheviot Field Existing Geomodels

- **Structural uncertainty analysis and model build automation**
- **Geo screening workflow to select ~50 representative models**
- **Screen models then history match ensemble of 3-9 representative cases**
- **Prediction simulation of ensemble using current reference strategy**
- **Document project structure and workflows**

Base Case Workflow
- 300 lines
- ~10-12 mins to rebuild geomodel from input surface

Base Case Workflow with uncertainty parametrisation
- 500 lines
- 2-3 days to build over 300 realisation, and run volumetrics and flow connectivity calculation on each
Cheviot Field: Objectives and Challenges

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Is there an improved petrophysical properties correlation to be incorporated into Cheviot Field Geomodels?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>Improving properties correlation using a random forest regression workflow. Also, use additional training feature inputs (seismic and geometrical properties) to check for correlation coefficient improvements</td>
</tr>
<tr>
<td>Innovation</td>
<td>Integrating Geological Process Modeling workflow to be used as a training feature in the ML Property Modeling workflow for conditioning porosity and permeability.</td>
</tr>
<tr>
<td>Results</td>
<td>Increased correlation percentage for porosity from 61 to 94% on the blind testing validation workflow.</td>
</tr>
</tbody>
</table>
Cheviot Field: Machine Learning Property Modeling Workflow
Cheviot Field: Correlation Coefficients for Predicted Porosity

Comparison of Correlation Coefficients for Porosity predictions with and without ML Property Modeling Workflow
Cheviot Field: Porosity Blind Testing Validation

- QA/QC Blind testing

- Several sets of wells selected in a random order to check for variability on model prediction

- Blind Testing for ML Property Model porosity showed a correlation coefficient of 94.5% vs. 61% for the geostatistical model.
Cheviot Field: Integrating Forward Stratigraphic Modeling

- Additional training feature integrated into the workflow
- Forward Stratigraphic Model generates a property model conditioned to facies framework
- Porosity correlation coefficient improved by additional 5%.
Next Steps

Better statistics for correlations achieved, but so what?
1. Improved confidence in model results?
2. Better development plan?

1. **Updated Geological Model** with refined validated reservoir properties distributions on Porosity, Permeability, VShale & Permeability and hence updated NTG property

2. **Updating Base Case Volumetrics** with refined validated Net to Gross properties and an update on the Base Case Volumes may be observed

3. **Update on Uncertainty Volumetric Assessment** with possibility of refined Base Case Volumes as a result of model update the uncertainty assessment for the volumes would also be updated and validated

Final Geological Model for History Matching & Dynamic Simulation

The Dynamic Modeling History Matching and update on the Predictions and Forecasting Scenarios