

台灣中油股份有限公司 CPC Corporation, Taiwan

Petro-physical Characterization of Sedimentary Environments Using Collaborative New Method in Wireline logs Interpretation

<u>Chun-Ming Chiu</u>¹, Li-Chung Feng¹, Yun-Hao Wu², Andy Min Hao Wang³, Chi-Chen Yang¹, Tim Tsung-Wen Hsiao¹

- 1. Exploration & Production Business Division, CPC Corporation, Taiwan
- 2. Exploration & Production Research Institute, CPC Corporation, Taiwan
- 3. Schlumberger, Digital & Integration

Content

- Background and object
- Reservoir evaluation and Field develop plan
- Preliminary results of QI Machine Learning
- Concluding Remarks

Purpose of the project

台灣中油股份有限公司

CPC Corporation, Taiwan

General Geology

台灣中油股份有限公司

CPC Corporation, Taiwan

(After Genik, 1993)

General Geology

(IHS Energy Group, 2001)

Field Development Plan Optimization

Lithology Characterization and sedimentary facies

台灣中油股份有限公司 CPC Corporation, Taiwan

Core-Log lithofacies integration

CPC Corporation, Taiwan

Reservoir Sand

Log: GR is around 90 gAPI, lower density, lower neutron, high Sonic velocity, higher resistivity; porosity>10%; shale content<40%.

Core: Fining up medium grained, minor coarse grained, occasionally very coarse grained, moderately sorted, clear cross bedding, good porosity, heavy oil odor.

Tight Sand

Log: GR>100 gAPI, higher density, higher neutron, lower resistivity; porosity<10%; shale content<60%.

Core: Siltstone with very fine sand stripes in part, common argillaceous matrix, poor porosity, no shows.

Calcareous Sand

Log: Lower GR, high density, density>2.5, high resistivity; porosity<10%; calcite content>10%, shale content<60%.

Core: Medium grained, trace very coarse grained, sub-angular to sub-rounded, moderately sorted, trace kaolinitic cement, calcareous cement.

Shale

Log: Higher GR, wide neutron-density cross, low Sonic velocity, lower resistivity; shale content>60%.

В

С

	Clay Volume (Vcl)	Porosity (Ф)	Density (ρ)	Calcite Volume (Vclc)	Lith Classification
	Vcl ≤ 0.4	Φ≥0.1	/	/	Reservoir Sand
		Φ < 0.1	/	/	Tight Sand
	0.4 < Vcl < 0.6	Φ≥0.03	/	/	
		Φ < 0.03	ρ > 2.5	Vclc > 0.02	
			/	/	Shale
	Vcl ≥ 0.6	/	/	/	

Structure Modeling

- :1090 20 - :2010 20 - :2050 20 - :2150 20 - :2150 20 - :2150 20 - :2250 20

Fault Framework

Model Construction

Model Construction

Structure gridding

Well data upscaling

Property Modeling

Upscale

10

Property Modeling

Decision Tree

- Machine Learning Module
 in Petrel
- Case Study
 - Porosity curve prediction
 - Shear wave curve prediction
 - porosity cube prediction

Porosity Log prediction

- Conventional logging curves of 8 wells are used for training
 - Gamma Ray (GR), Deep Resistivity (RT), Medium Resistivity (RLA3), Invaded Formation Resistivity (RXOZ), Density (RHOZ), Neutron (TNPH), Sonic (DT), photoelectric effect (PEFZ)
- Target: Effective Porosity (PHIE)
- Results curves are mostly consistent with manual interpretation

Shear wave prediction

- Conventional logging curves are used for training
 - Gamma Ray (GR), Deep Resistivity (RT), \succ Density (RHOZ), Neutron (TNPH), Sonic (DT)
- Target: Shear Slowness (DTSH)
- The predicted curve matches well with actual logged curve.
- discrimination of reservoir fluid

CPC Corporation, Taiwan

Porosity Cube prediction

<u>Training model :</u>

- Prediction:
- Input: P-impedance, Density and Vp/Vs cube.
- Output: Porosity Cube
- <u>Result</u>
 - Match well with actual logging curve

Data integration & collaboration

Challenges:

- Data storage in PC or external disk
- Time-consuming for data searching, preparation and transfer.
- Human errors in data import (CRS, datum, units)
- Duplicated Data
- Research result display (color bar, template, well-section, workflow)

High Performance Computing Storage

Workflow

- Data index, search, access
- Data share, collaboration
- Data filtering and management
- Resource evaluation workflow, reservoir simulation workflow
- Play Chance Mapping

Concluding Remark

- The sedimentary facies and reservoir characterization was analyzed by core-Log lithofacies integrating.
- The resource evaluation and field development plan were completed based on the geological model from deterministic inversion.
- Case study of QL Machine Learning suggested the predicted porosity and shear wave match well with manual interpretation and actual log data, respectively.
- The Petrel E&P platform and Studio improved efficiency in data management and collaboration among researchers.

Thank you for listening

