Reservoir Modelling and Geomechanics of Hydrogen Storage at the CO2CRC Otway International Test Centre

Eric Tenthorey, Andrew Feitz (Geoscience Australia)

Ratih Puspitasari, Hsiao Moh Wun, Olivia Suryanto, Marie Ann Giddins, Zachariah Pallikatethakil, Rashmin Dandekar, (Schlumberger)

[Image of reservoir model with labels Naylor, CRC-1, CRC-2, NAYLOR, NAYLOR SOUTH-1]
Geoscience Australia

- Geoscience Australia is Australia’s pre-eminent public sector geoscience organisation.
- Nation's trusted advisor on the geology and geography of Australia.
- We apply science and technology to describe and understand the Earth for the benefit of Australia.
- Provide precompetitive data for use by industry and government
Exploring for the Future Programme and the Hydrogen Economy

- $124.5M Programme

Australia’s Future Energy Resources:
A Project within EFTF to understand energy resource potential

- Gas, oil, and CO₂ geological storage potential in underexplored basins
- Hydrogen storage and sources
- CO2-EOR in residual oil zones
- Basin inventory

www.ga.gov.au/eftf
Aims of Otway H2 Storage Study

- Use the Naylor Field at the Otway International Test Centre as a template for reservoir and geomechanical modelling of H2 storage

- Model the multicyclic injection of hydrogen into a depleted gas field and identify any flow related or geomechanical risks

- Conduct extensive sensitivity analysis (cushion gas, diffusion, methanogenesis, temperature etc)

- Compare hydrogen injection to model runs using CO2 and methane to identify any key differences.
Naylor Field

- Fault-bound anticline, with sealing faults on 3 sides of the structure
- Gas field in production until 2003
- Used by the CO2CRC from 2007 as a CO2 storage pilot project
- Hydrogen injection and production in this study is conducted near crest of anticline
- ECLIPSE models constructed in 2006 by CO2CRC are the foundation for the H2 modelling

Berard et al., 2008
Initial Reservoir Simulations without Geomechanics

- Ensure modified grid performs close to reference grid
- Conduct sensitivity analysis for different parameters (cushion gas, diffusivity, dissolution, methanogenesis)

- Reservoir volumetric rate of 1500 m3/d for both injection and production
- 2 injection production cycles
- 1 month shut in between
- 40 days N2 cushion gas
Importance of Cushion Gas

- N_2 cushion gas ensures efficient delivery of H_2 gas
- Constrains H_2 to crest of anticline
- Initial N_2 cushion gas is used for later geomechanical simulations
H2 Storage vs CO2 (Injection)

- N2 cushion gas initially fills crest of structure
- CO2 sinks to lower reservoir levels and displaces N2 laterally
- H2 remains at crest of structure
H2 Storage vs CO2 (Production)

- Little CO2 produced relative to H2 and significant cushion gas is extracted.
- CO2 remains in lower portions of reservoir, which is favourable for CO2 storage.
- H2 is produced very efficiently, with most cushion gas remaining in reservoir.
H2 Storage vs CO2 (Production)

- Subsurface behaviour of CO2 and H2 result in large differences in gas recovery
- H2 recovery improves with successive cycles
H2 Storage vs CO2 (Pressure differences)

- Injection and production rates for CO2 are highest due to greater density change.
- Field pressures are the same for all 3 gases.
- Bottom hole pressure for CO2 slightly larger due to greater viscosity.
Geomechanical model

- Dynamic moduli using sonic and density logs
- Calibration of elastic properties using rock mechanical testing
- Stress orientations from previous mechanical studies
- Magnitude of maximum horizontal stress determined by iterative matching of synthetic borehole image to observed borehole features
Geomechanical Model Embedment

- Dynamic moduli using sonic and density logs
- Calibration of elastic properties using rock mechanical testing
Dynamic Geomechanical Model Runs

- Mostly run at standard injection and withdrawal rate
- More cycles than uncoupled reservoir modelling
- Other parameters varied: thermal properties, injection rate, fault properties, gas type

<table>
<thead>
<tr>
<th>CASE ID</th>
<th>Fluid</th>
<th>Rate (m3d)</th>
<th># Cycles</th>
<th>ECL thermal</th>
<th>VIS thermal</th>
<th>Fault Prop</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTI H2</td>
<td>H2</td>
<td>1500</td>
<td>10</td>
<td>HTI</td>
<td>13E-6</td>
<td>FA 75%</td>
</tr>
<tr>
<td>HTI C1</td>
<td>C1</td>
<td>1500</td>
<td>10</td>
<td>HTI</td>
<td>13E-6</td>
<td>FA 75%</td>
</tr>
<tr>
<td>HTI CO2</td>
<td>CO2</td>
<td>1500</td>
<td>10</td>
<td>HTI</td>
<td>13E-6</td>
<td>FA 75%</td>
</tr>
<tr>
<td>HTI H2 500CY10</td>
<td>H2</td>
<td>500</td>
<td>10</td>
<td>HTI</td>
<td>13E-6</td>
<td>FA 75%</td>
</tr>
<tr>
<td>HTI H2 500CY5</td>
<td>H2</td>
<td>500</td>
<td>5</td>
<td>HTI</td>
<td>13E-6</td>
<td>FA 75%</td>
</tr>
<tr>
<td>LTI H2</td>
<td>H2</td>
<td>1500</td>
<td>10</td>
<td>LTI</td>
<td>13E-6</td>
<td>FA 75%</td>
</tr>
<tr>
<td>HTI H2 NoT</td>
<td>H2</td>
<td>1500</td>
<td>10</td>
<td>HTI</td>
<td>No DT</td>
<td>FA 75%</td>
</tr>
<tr>
<td>HTI H2 TH11</td>
<td>H2</td>
<td>1500</td>
<td>10</td>
<td>HTI</td>
<td>11E-6</td>
<td>FA 75%</td>
</tr>
<tr>
<td>HTI H2 TH15</td>
<td>H2</td>
<td>1500</td>
<td>10</td>
<td>HTI</td>
<td>15E-6</td>
<td>FA 75%</td>
</tr>
<tr>
<td>HTI H2 FA90</td>
<td>H2</td>
<td>1500</td>
<td>10</td>
<td>HTI</td>
<td>13E-6</td>
<td>FA 90%</td>
</tr>
</tbody>
</table>
Temperature Effects

- Greatest geomechanical anomalies are driven by colder gases being introduced to a warm reservoir.
- Different gas densities with depth lead to different thermal signatures for the different gases.
- Injection rate for H2 is lower, therefore more equilibration with host rock.
- CO2 requires high injection rate to meet 1500 m3/d flux at depth, therefore lower T at depth.

<table>
<thead>
<tr>
<th>Injectant type</th>
<th>Reservoir volumetric injection rate (m3/d)</th>
<th>Surface injection rate (sm3/d)</th>
<th>Bottom-hole pressure (bar)</th>
<th>Bottom-hole temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>1500</td>
<td>246,000</td>
<td>207.0</td>
<td>47.6</td>
</tr>
<tr>
<td>C1</td>
<td>1500</td>
<td>328,000</td>
<td>207.8</td>
<td>35.5</td>
</tr>
<tr>
<td>CO2</td>
<td>1500</td>
<td>713,000</td>
<td>210.7</td>
<td>28.5</td>
</tr>
</tbody>
</table>
Temperature Effects

- Temperature change in reservoir is greatest for CO2 case
- H2 injection produces a smaller anomaly
- Thermal pulse propagates into the overlying caprock
Reservoir Deformation

- Little reservoir deformation observed for H2 storage case
- Negative deformation occurs for CO2, even during pressurisation
- For CO2 thermal effects are stronger than the pressure effects
Impacts of Thermal Contraction on Fracture Pressure

- Fracture pressures depend on confining stress
- Cooling in wellbore region reduces confining stresses and facilitates fracturing.
Thermally Induced Fracturing

- Thermal effects can depress fracture pressures below the wellbore pressure
- Effects are greatest for CO2 models
- Fracture pressures are also depressed in transition zone and caprock
- Reducing injection and production rate significantly reduces thermal effects by allowing greater temperature equilibration
Fault Reactivation

- Thermal contraction and associated elastic relaxation results in plastic deformation along nearby faults
- Effects are much larger for CO2 than for H2
- Neither case reaches > 1% shear strain, which is empirically determined critical value
Key Observations

Geomechanics

- Model runs using CO2 reach slightly higher pressures near the wellbore than H2 and CH4, for same injection rate at reservoir level
- H2 exhibits least thermal cooling at reservoir level due to lower surface injection rates (highest formation volume factor)
- Thermally induced reservoir deformation is small for H2 injection, relative to CO2
- Thermal effects near well bore can reduce fracture pressures to critical levels
- Fracture pressures also modified in cap rock
- Reservoir deformation can also lead to plastic deformation on fault planes
Key Observations

Reservoir Simulations

- Presence of N2 cushion gas is important; constrains H2 to crest of anticline and improves deliverability
- Sensitivity models involving H2 dissolution, diffusivity and methanogenesis make insignificant difference
- H2 and CH4 remain near crest of anticline, while CO2 sinks through N2 cushion gas
- H2 recovery rate from each injection-production cycle is approximately 70-80%
- Up to 56% of the N2 cushion gas is produced by the 10th cycle