Modeling of Salinity Dependent CO₂ Solubility in the Aqueous Phase in INTERSECT

Choongyong Han, Yih-Bor Chang, Baris Guyaguler Kevin Chambers

Chevron Technical Center

Schlumberger Digital Forum 2022 September 20 - 22, 2022

INTERSECT Reservoir Simulator

- Physics-based computer models to predict impact of production/injection operations for upstream projects
- Forecast production/injection rates, estimate ultimate recoveries, quantify impact of uncertainties, and optimize field development
- Jointly developed by Chevron and Schlumberger since 2000 with TotalEnergies as a new partner since 2012
- Utilized in all Chevron business units today
- Simulator of choice for Chevron's underground CO₂ storage projects

- Objectives
- Implementation overview
- What to update in INTERSECT input to model CO₂ solubility in water
- Simulation examples
 - -Case 1: Validation
 - -Case 2: The effect of salinity
 - -Case 3: Consideration of salinity gradient
- Summary

3

Objectives

- To enhance INTERSECT functionality of isothermal CO₂ solubility in water (shortly, CSIW) to consider the wellknown effect of salinity on the CSIW

Figure 1. Typical change of solubilized CO₂ gas to water ratio (GWR) with salinity

Implementation Overview

– Definition of salinity

$$S(wt\%) = \frac{mass \ of \ salt \ (solute)}{mass \ of \ water \ (solvent)} \times 100 = \frac{\sum_{i=ion} M_i w_i}{M_w w_w} \times 100$$
(Eq. 1)

, where

 w_i is the mole fraction of component *i* in the aqueous phase

 M_i is the molecular weight of component *i*.

- The multi-component brine functionality has been coupled with the CSIW functionality to evaluate the salinity in a cell.
- The effect of salinity on following aqueous phase properties is considered:
 - GWR
 - Fugacity coefficient of CO₂
 - Molar density
 - Mass density
 - Viscosity
 - Three phase behavior

What to Update in INTERSECT CSIW Case Input

- To compute salinity
 - -add brine functionality related input
 - -specify initial concentration of brine components in a CO₂ storage reservoir
- To consider the salinity effect
 - -have multiple CO₂ solubility tables depending on salinity
 - -have multiple aqueous phase property related input depending on salinity
- To observe salinity change
 - -add reporting of salinity in wt%

Simulation Examples

- Case 1: Validation
- Case 2: The effect of salinity
- Case 3: Consideration of salinity gradient

7

Case 1: Validation

- Storage reservoir: 450 m x 450 m x 5 m (9 x 9 x 1 cells)
- Permeability x: 500 mD, y: 500 mD, z: 50 mD, Porosity: 0.1
- One CO₂ injector and four producers
- Injection for 5 years and shut in of every well for 5 years
- Compare (CSIW + no brine having a single CSIW table) with (CSIW + 0 brine having multiple CSIW tables)

Case 1: Validation - continued

b) CO₂ gas saturation in the reservoir over time

d) GWR at 10 year

c) CO₂ gas saturation at 10 year

Figure 3. Comparison between (CSIW + no brine) and (CSIW + 0 brine)

Case 2: The Effect of Salinity

- The same model as Case 1 CSIW + brine (having multiple CSIW tables depending on salinity)
- Three models of different constant initial salinities to investigate the salinity effect (0, 15, and 30 wt%)

Figure 4. The change of CO_2 gas saturation over time depending on salinity in the reservoir

Figure 5. The change bottomhole pressure of injection well over time depending on salinity

Case 2: The Effect of Salinity - continued

Figure 6. The change of GWR over time depending on salinity at injection cell

Figure 7. The change of CO_2 gas saturation over time depending on salinity near production well

Case 3: Consideration of Salinity Gradient

- Storage reservoir: 2250 m x 2250 m x 400 m (45 x 45 x 40 cells) having gravity effect
- Permeability x: 500 mD, y: 500 mD, z: 50 mD, Porosity: 0.1
- One CO₂ injector and four producers with completions near bottom of the reservoir
- Injection for 5 years and shut in of every well for 5 years
- Increase of initial salinity along depth (5 to 15 wt% along 400 m, with gradient of 0.025 wt% per m)

Figure 8. CO₂ storage reservoir used for Case 3

Case 3: Consideration of Salinity Gradient - *continued*

Time = 0 year (start of CO_2 injection)

Time = 5 year (well shut-in)

Time = 10 year

Figure 9. The change of CO₂ gas saturation over time

Gas Saturation

K.

Producer •

Gas Injector

Open Node

٠

Case 3: Consideration of Salinity Gradient - *continued*

(a) Variable salinity case

(b) **Constant** salinity case

Figure 10. Comparison of properties between variable and constant salinity cases at 5 year (well shut-in)

- The INTERSECT isothermal CSIW functionality has been enhanced with coupling of the multi-component brine option to simulate salinity effect on CO₂ solubility in the aqueous phase.
- The salinity effect on CO₂ solubility, three phase flash, and aqueous phase properties such as CO_2 fugacity, density, and viscosity has been implemented.
- The enhancement has been validated by comparing CSIW + 0 brine with CSIW + no brine cases.
- Simulation examples show expected results of less CO_2 solubility and more CO_2 gas saturation with increasing salinity.

