

A digital transformation journey for a mature field using production technologies and innovation principles

Yeniffer López Ruiz Senior Production Engineer

# The world is changing









1920

1970

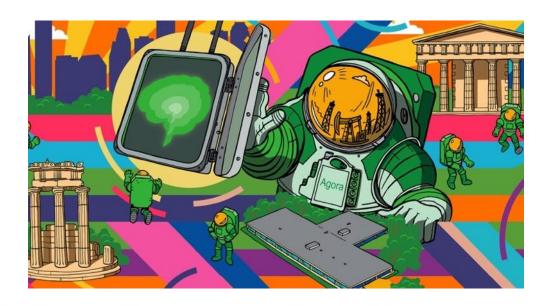
2010

Now



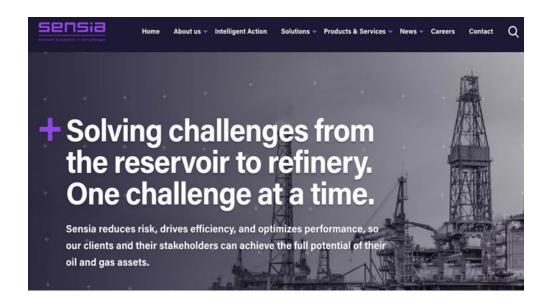
\$1M\* Cost Saving
in Nigeria via IoT sensors & connectivity




**6%\* Production Increase** 

in US via Ambyint's Al-powered artificial lift solution

# Adapting to Oil and Gas Industry


# Agora

- Startup created and incubated by Schlumberger
- Think big, prototype small, and scale fast
- IIoT platform—edge computing with ML/AI



### Sensia

- JV between Schlumberger and Rockwell
- Process automation +Petrotechnical Expertise
- 1,000+ experts serving customers globally

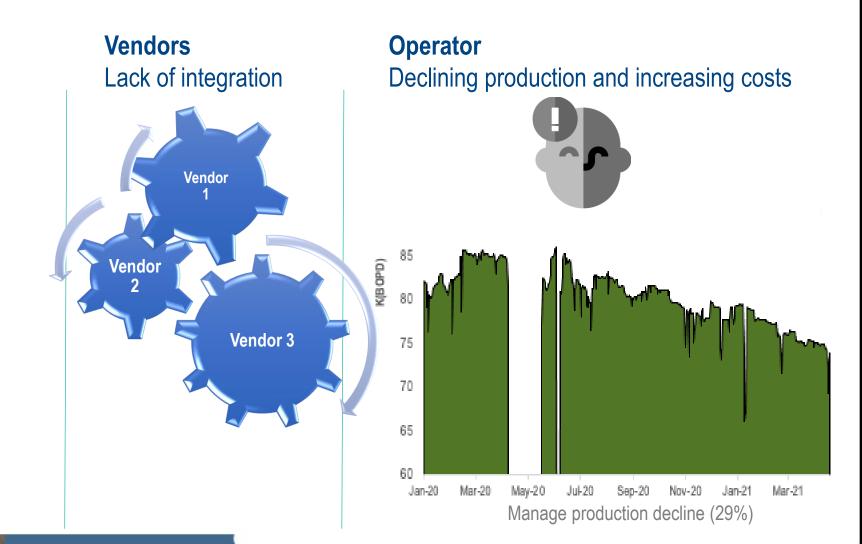


## **Problem Definition**

#### Challenge

Mixed equipment and Opex concerns




**400+** Assets (ESP, Meters, SRP etc...)



**5,000+** Field Visit/Quarter



~72,000 km Driven/Quarter

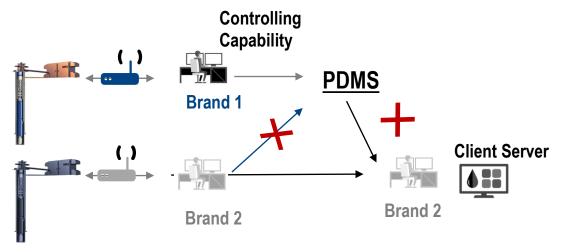


# **Proposed Solution**



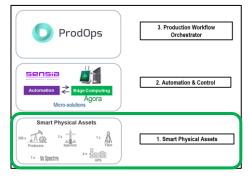

3. Production Workflow Orchestrator

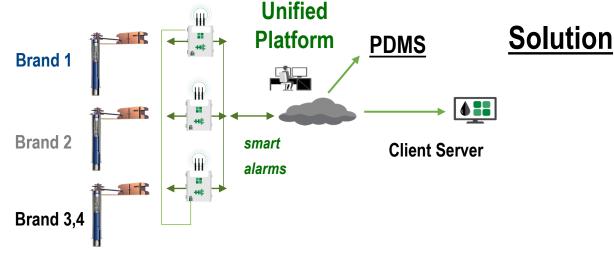
# Digital Production Approach




2. Automation & Control




1. Smart Physical Assets


# The Compelling Event - The ESP Surveillance



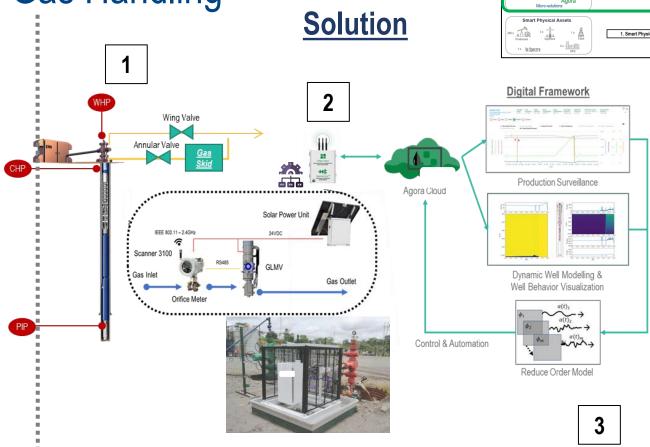
Disconnected Manual

**Problem** 






#### Reduce downtime and improve people efficiency


- Contextualized data aggregation, transmission, and visualization for multiple vendors
- Early Events Detection (Change manual process)
- Provide edge AI at the well site with smart alarms
- Decrease field visits for operations support
- Reduce kilometers and CO<sub>2</sub> emissions

Moving to the next Level - Annular Gas Handling



#### **Previous Operation**

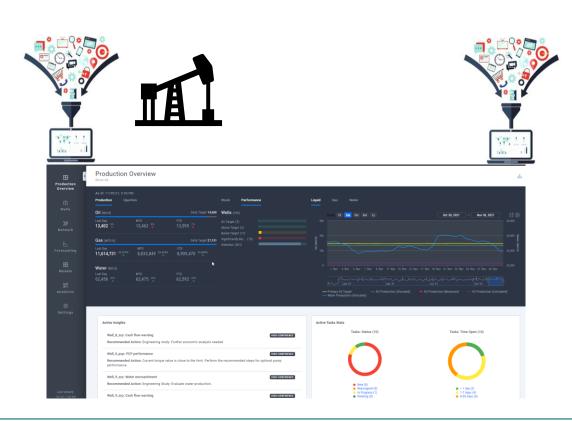
- Manual bleed off annulus
- ~100 trips/month/well to optimize production
- High PIP fluctuation ESP performance
- Non-optimized wells

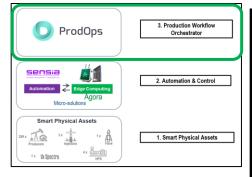


#### **Current Operation**

- Production Optimization
- ESP Power Consumption Reduction
- Reduce driving to location (connected, no valve manipulation)

ProdOps


2. Automation & Control


## **Production Workflows Orchestrator**



- ✓ Concept Selection
- ✓ Design
- ✓ Define Plan
- ✓ Deploy
- ✓ Well Construction







✓ Surveillance

- Analysis
- Diagnostics
- Optimization
- Decisions



Well (Performance)

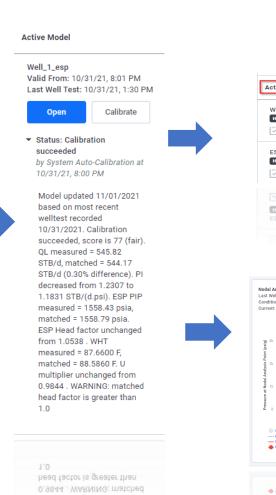
Network (Debottlenecking, Integrity)

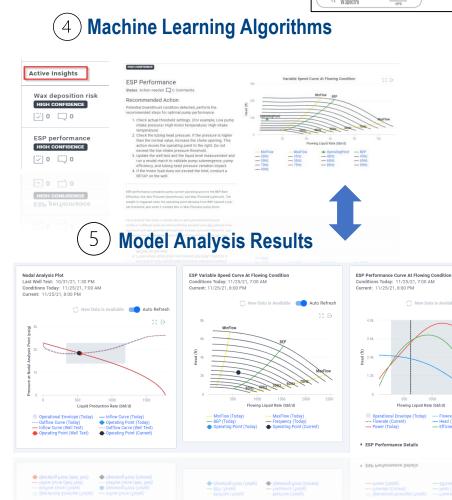
Facility (Optimization)

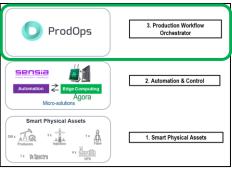
Reservoir Management

## **Production Workflows Orchestrator**

1 Operational Data

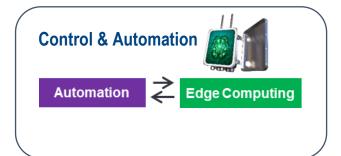

Well 1 esp

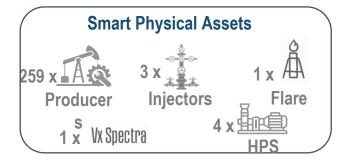

| Well Test                               |                          |                        |                        |                        |                        |            |                       |                        |            |            |            |
|-----------------------------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|------------|-----------------------|------------------------|------------|------------|------------|
| Parameter                               | Current                  | 10/31/2021<br>12:30:50 | 09/30/2021<br>13:30:00 | 08/31/2021<br>13:30:00 | 07/31/2021<br>13:30:00 | 06/30/2021 | 05/31/2021<br>TR30:00 | 04/30/2021<br>12:30:00 | 03/31/2021 | 02/28/2021 | 01/31/2021 |
| Well Type                               | Producer                 | Producer               | Producer               | Producer               | Producer               | Producer   | Producer              | Producer               | Producer   | Producer   | Produc     |
| Entity Product                          | Oil                      | Oil                    | Oil                    | 011                    | 08                     | OII        | Oil                   | Oil                    | Oil        | Oil        | (          |
| Well Artificial Lift Type               | ESP                      | ESP                    | ESP                    | ESP                    | ESP                    | ESP        | ESP                   | ESP                    | ESP        | ESP        | ES         |
| Well Test Duration ::                   | 8.00                     | 8.00                   | 8.00                   | 8.00                   | 8.00                   | 8.00       | 8.00                  | 8.00                   | 8.00       | 8.00       | 8.6        |
| Chake Size in                           | 2.20                     | 2.00                   | 2.00                   | 2.00                   | 2.00                   | 2.00       | 2.00                  | 2.00                   | 2.60       | 2.00       | 2.1        |
| Oil Production Rate hol/d               | 424.83 (A)<br>479.66 (E) | 484.11                 | 499.30                 | 496.69                 | 518.89                 | 531.20     | 542.38                | 554.63                 | 568.25     | 575.13     | 587.       |
| Das Production Rate MCF/st              | 127.50 (A)<br>141.22 (E) | 142.43                 | 146.44                 | 146.90                 | 152.16                 | 155.21     | 158.57                | 161.59                 | 165.36     | 167.56     | 171        |
| Associated Water Production Rate bol/si | 44.76 (A)<br>61.61 (E)   | 61.71                  | 67.70                  | 66.64                  | 76.01                  | 81.59      | 86.90                 | 93.02                  | 100.19     | 103.97     | 110.       |
| Liquid Production Rate 1969             | 469.59 (A)<br>541.27 (E) | 545.81                 | 567.00                 | 563.33                 | 594.91                 | 612.79     | 629.28                | 647.64                 | 669.44     | 679.11     | 698.3      |
| Bottom Hole Pressure paig               | 1,846.92                 | 1,819.86               | 1,816.61               | 1,829.35               | 1,818.36               | 1,814.03   | 1,816:14              | 1,812.01               | 1,811.52   | 1,814.10   | 1,815.3    |
| Well Head Pressure prip                 | 346.97                   | 345.30                 | 345.30                 | 345.30                 | 345.30                 | 345.30     | 345,30                | 345.30                 | 345.30     | 345.30     | 345.       |
| Bottom Hole Temperature 'F              |                          |                        |                        |                        |                        |            |                       |                        |            |            |            |
| Well Head Temperature 🕆                 | 83.95                    | 87.66                  | 89.31                  | 89.08                  | 91.50                  | 92.88      | 94,16                 | 95.56                  | 97.15      | 97.98      | 99.        |
| Casing Head Pressure psig               |                          |                        |                        |                        |                        |            |                       |                        |            |            |            |
| Gas-oil Ratio scr/stn                   |                          | 294.21                 | 293.29                 | 295.75                 | 293.23                 | 292.18     | 292.36                | 291.34                 | 290.99     | 291.34     | 291.4      |
| Bas-limid Ratio accura                  | 271.51                   |                        |                        |                        |                        |            |                       |                        |            |            |            |




## **3** Software Integration

Excellence in Execution



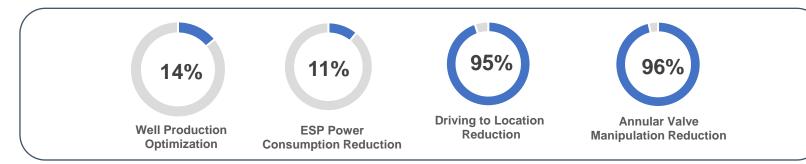






## **Created Value**

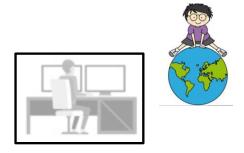
Production Workflow Orchestrator










**Asset Built ("Build Your Own")** 





# Conclusions

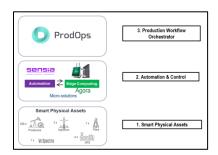


1. Remote centers expansion



4. Personnel Exposure




2. Reduce operational costs



5. Environmental Commitment



3. ML and AI unlock production



6. Digital Production Approach

# Acknowledgments



Annalyn Azancot
Digital Implementation
Manager



Gary Tagarot
Production and Execution
Manager



Angélica Vargas Digital Sales Manager



Gian-Marcio Gey Agora S&C Manager



Julia Carrera ECP Agora Operations Manager



Nidia Cardenas Service Delivery Engineer



Fernando Fuquene Digital Production Operations Lead



Willian Guerrero Production Engineer



Tracy Pinto Production Engineer



Renato Vallejo Production Engineer / FA



Rubén Segovia Production Engineer Leader





Carlos Villa Senior Production Engineer



Johanna Gallegos Senior Production Engineer



Estefi Batallas Production Engineer



Galo Calvache Digital Support Analyst



Daniel Dávalos Ecuador Agora Business

