Schlumberger Digital Forum 2022

Transforming flare system performance and costs using dynamic digital twins

Neill Renton
Contents

- Introduction
- Digital Twin, Shadow or Model?
- Building a Digital Twin
- HP Flare Assessment
- Conclusions
- Q&A
Digital Twin, Shadow or Model?

A ‘digital twin’ is a digital copy of a physical object collecting real-time data from the asset and deriving information not being measured directly in the hardware [1, 2]. Benefits include [4, 5]:

- Improved performance of assets;
- Reduce the likelihood of a major accident;
- Improvements on safety training, quality assurance, maintenance and inspection costs;
- Predict potential new changes in physical systems over time;

However, addressing as-built condition and changes in plant is a key challenge.....
Building a Digital Twin

Data Collection
Segment Volume Calculations
Symmetry Model Build
Validation of Model
Simulation of Results
Display Results / Reporting

P&IDs
Isometrics
Vessel Data Sheets
Valve and Restriction Orifice Data Sheets
Alarm and Trip Register

RCLD
Building a Digital Twin - Flare Assessment

RCLD were approached by an Operator of an Oil & Gas production platform in the UK North Sea to produce a dynamic digital model of the high-pressure flare network and system. The model was required to assess design limitations following proposed introduction of new subsea tie-backs and module:

- Maximum peak mass flow rates for coincident blowdown scenarios against a current design flare tip capacity of 140,000 kg/hr;
- Each individual blowdown segment performance standard criteria for safe depressurisation (API 521 requirements);
- Time-varying nature of Flare Event.
- Current software tools not able to model time-varying nature of relief and blowdown events.

Where design constraints were breached - recommend required design changes.
What was at Stake?

Over $1M project spend on radiation shielding in the short term.
Major flare boom re-design and constructions costs of over $21M in the long term.
Digital ‘Twin’ - HP Flare System
Digital ‘Twin’ - HP Flare System
Digital ‘Twin’ - HP Flare System
Building a Digital Model/Shadow

Typical Historical Data Sources Required:
- P&IDs
- Isometrics
- Vessel Data Sheets
- Valve and Restriction Orifice Data Sheets
- Line list (design constraints)
- Alarm and Trip Register
- Aspen HYSYS model
- Process Upset scenarios
- As built status of plant
- Historian data

Data collection
Model build
Reporting
Volume calculations
Simulations
Flare Assessment - Challenges

Challenges:

- Peak mass flows were breaching the flare tip capacity of 140,000 kg/hr and radiation limits; duration unknown.
- Dynamic behaviour of the plant e.g. HP compressors upon shutdown do not blowdown at the HP trips but instead at settle out conditions.
- Liquid levels and heat inputs.

Solutions:

- Dynamic modelling of the HP Flare System allowed for flare packing to take place. Flare packing enables the inflow to be delivered throughout the system - currently unique to Symmetry.
- The settle-out behaviour of the HP compressors was modelled dynamically using Symmetry where each compressor blowdown segment was isolated at the inlet and outlet SDV’s.
- The heat inputs were determined as per API 521 for the two cases; with and without prompt firefighting and adequate drainage.
Flare Assessment - Results

Peak of 124,914 kg/hr
Conclusions

- Digital Twins, Shadows and Models have different characteristics
- Building a Digital Twin takes time and a variety of data inputs.
- Dynamic modelling in Symmetry accounts for flare packing and realistic mass flowrates at the flare tip.
- Hydraulic and Radiation limits in API 521 all achieved.
- Digital Twins create value - No modifications to the existing plant needed saving >$20M.
Q&A

Thank-you

Dr. Neill C. Renton, Managing Director
B: +44 (0)7388-948667
www.rcld.co.uk
References


