Schlumberger Digital Forum 2022 Transforming flare system performance and costs using dynamic digital twins

Neill Renton

Contents

- Introduction
- Digital Twin, Shadow or Model?
- Building a Digital Twin
- HP Flare Assessment
- Conclusions
- ► Q&A

Digital Twin, Shadow or Model?

A 'digital twin' is a digital copy of a physical object collecting real-time data from the asset and deriving information not being measured directly in the hardware [1, 2]. Benefits include [4, 5]:

- Improved performance of assets;
- Reduce the likelihood of a major accident;
- Improvements on safety training, quality assurance, maintenance and inspection costs;
- Predict potential new changes in physical systems over time;

However, addressing as-built condition and changes in plant is a key challenge.....

Building a Digital Twin - Flare Assessment

RCLD were approached by an Operator of an Oil & Gas production platform in the UK North Sea to produce a dynamic digital model of the high-pressure flare network and system. The model was required to assess design limitations following proposed introduction of new subsea tie-backs and module:

- Maximum peak mass flow rates for coincident blowdown scenarios against a current design flare tip capacity of 140,000 kg/hr;
- Each individual blowdown segment performance standard criteria for safe depressurisation (API 521 requirements).
- Time-varying nature of Flare Event.
- Current software tools not able to model time-varying nature of relief and blowdown events.

Where design constraints were breached - recommend required design changes.

What was at Stake?

Over \$1M project spend on radiation shielding in the short term.

Major flare boom re-design and constructions costs of over \$21M in the long term.

Digital 'Twin' - HP Flare System

				OK.				*		OK			
ame Pipe-3						Description ~		Name BDV					escription
5133 Pressure Drop Corr.	 →C Colebrook 	• Filter	131 All •	•			H-010	/TFF1.Vessel_Volum	-• →[Nozzles H	sao sao	• m Results Malfunctions	Report	Notes
Summary Pipe Detail Profiles Heat Transfer Nozzles Holdup Equilibrium Results Report Notes								V Main Data V Geometry / Choke Calculation					
✓ Main Data ✓ Pipe Data				 Results 			Name	> Value	Name	> Value			
Name	> Value	Name	> Value	Name	> Value			Oetta P [bar]	0.00003	Valve Type	Generic *		
Delta P (bar)	0.00	Total Length [m]	1.749	Velocity In Im/s]	0.00			CV	1000.00	Size (cm)	7,620		
Outo IWI	0.0006 - 0	Elevation	Profile	Velocity Out Im/sl	0.00		8	Characteristic	Linear +	Inter Diam (cm)	7,620		
U 1W/m2-K0	0.00	Elevation In [m]	0.00	A Inventory			6 1	16 Opening [16]	0.00	Outlet Diam [cm]	10.226		
Heat Transfer Calc Type	Simple +	Elevation Out [m]	0.00	Line Pack [5m3]	0.0579			Valve CV At Opening	000	Choice Calculation	Use Critical P Ratio +		
Outside Data	Ambient +	Schedule	Custom-	Liquid (m3)	0.000			Mass Now (kg/m)	429.94	El Pactor	0.6600		
Number of Sections	3	Inner Diameter (cm)	20.640	Oil (m3)	0.000			In voi now (ma/n)	40.390	Calc Ugad Choke	0.07.07		
Choke Calculation	Frozen Flash +	Outer Diameter [cm]	21.910	Water (m3)	0.000			is choked		FE FREIOT	03/4/		
Is Choked		Thickness [cm]	0.635	Bulk Std Lig Vol (m3)	0.000			Actuator	2	⇒ Sizing			
Max. Mach Number	0.00	Roughness (cm)	0.005	> Advanced				> Regulator		> Advanced			
Slip Exponent	0.00							Material				_	
Friction Factor Tuning	1.00							Douthiama	100	0.4			
Material								Connected Stream (Inc.	CON JEPELM	ensel # /FPF1.HP	FLA		
Porthame	In	Out						Vanfrac	op mine	1.00	1.00		
Connected Stream/Unit O	DO /FPF1.HP FLA							TICI		70.4	20.0		
Vapfrac		1.00 1.4	00					Pitrarioti		8.85	0.00		
TICI		20.0 20	0.0					Mole Flow (kmol/h)		17.22	0.00		
P (barip)		0.00 0.4	00					Mass flow (kg/h)		429.94	0.00		
Mole Flow (kmol/h)		0.00 0.0	00					Volume Flow (m3/h)		45,398	0.000		
Mass Now (kg/h)		0.00 0.0	00					Std Lig Volume Flow In	3.01	1.134	0.000		
Volume Flow (m3/h)		0.000 0.00	00					Std Gas Volume Flow 0	Sm 3/d1	9.7596+3	0.000 + 0		
Std Lig Volume Flow [m]/	00	0.000 000.0	00					Parameters and a second second	Nonsered II	100407435			
Std Gas Volume Flow (Sm	0.0 [b/.En	0E+0 0.00E+	+0										Ignore
Properties (Alt+R)							1.54						
A Mole Fraction (Fraction	1												
CARBON DIOXIDE	0.0	2612 0.0261	12										
NITROGEN	0.0	0711 0.007	13										
METHANE	0.7	5813 0.758	13										
##11221#		ana anis	**			•							
Disc Colorison Colin D	Pipe_ Pipe Flow Pa	Pipe Flow Path Viewer											

Ignored

Digital 'Twin'- HP Flare System

Digital 'Twin'- HP Flare System

Building a Digital Model/Shadow

Typical Historical Data Sources Required:

- P&IDs
- Isometrics
- Vessel Data Sheets
- Valve and Restriction Orifice Data Sheets
- Line list (design constraints)
- Alarm and Trip Register
- Aspen HYSYS model
- Process Upset scenarios
- As built status of plant
- Historian data

Flare Assessment - Challenges

Challenges:

- Peak mass flows were breaching the flare tip capacity of 140,000 kg/hr and radiation limits; duration unknown.
- Dynamic behaviour of the plant e.g. HP compressors upon shutdown do not blowdown at the HP trips but instead at settle out conditions.
- Liquid levels and heat inputs.

Solutions:

- Dynamic modelling of the HP Flare System allowed for flare packing to take place. Flare packing enables the inflow to be delivered throughout the system currently unique to Symmetry.
- The settle-out behaviour of the HP compressors was modelled dynamically using Symmetry where each compressor blowdown segment was isolated at the inlet and outlet SDV's.
- The heat inputs were determined as per API 521 for the two cases; with and without prompt firefighting and adequate drainage.

Flare Assessment - Results

Conclusions

- Digital Twins, Shadows and Models have different characteristics
- Building a Digital Twin takes time and a variety of data inputs.
- Dynamic modelling in Symmetry accounts for flare packing and realistic mass flowrates at the flare tip.
- Hydraulic and Radiation limits in API 521 all achieved.
- Digital Twins create value No modifications to the existing plant needed saving >\$20M.

Thank-you

Dr. Neill C. Renton, Managing Director B: +44 (0)7388-948667

www.rcld.co.uk

References

[1] - Liu, M., Fang, S., Dong, H. and Xu, C., 2021. Review of digital twin about concepts, technologies, and industrial applications. *Journal of Manufacturing Systems*, 58, pp.346-361.

[2] - Wanasinghe, T., Wroblewski, L., Petersen, B., Gosine, R., James, L., De Silva, O., Mann, G. and Warrian, P., 2020. Digital Twin for the Oil and Gas Industry: Overview, Research Trends, Opportunities, and Challenges. *IEEE Access*, 8, pp.104175-104197.

[3] - Kritzinger, W., Karner, M., Traar, G., Henjes, J. and Sihn, W., 2018. Digital Twin in manufacturing: A categorical literature review and classification. *IFAC-PapersOnLine*, 51(11), pp.1016-1022.

[4] - Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H. and Sui, F., 2018. Digital twin-driven product design, manufacturing and service with big data. *The International J ournal of Advanced Manufacturing Technology*, 94(9-12), pp.3563-3576.

[5] - Madni, A., Madni, C. and Lucero, S., 2019. Leveraging Digital Twin Technology in Model-Based Systems Engineering. *Systems*, 7(1), p.7.

