Well Portfolio Optimization (**WPO**) deployment in CaspiNeft Kazakhstan

Daniyar Nasipov CaspiNeft, Kazakhstan 2022

Content

About CaspiNeft

- Project Motivation and Objectives
- **3** Problem Definition and Analysis
- Problem Solution
- **5** Deliverables
 - Benefits Analysis (Benefits to Schlumberger and/or Clients)
 - Conclusion

6

About company and field

- One the of biggest Independents in West Kazakhstan
- Operates Airankol oilfield, located in Caspian region
- Digital Oil Field (DOF) implemented from 2020
- WPO deployed as part of DOF
- Has its own geological, production department and several workover teams with rigs

- Discovered in **1979**
- Atyrau region, Kazakhstan
- 2 domes (East and West)
- 200 vertical wells
- **Depth** of reservoirs:
 - 610 910 m in Cretaceous
 - 1050 1500 m in Jurassic
- Production with ESP, PCP, SRP

Project Motivation

Drivers

- Company has an ambition to grow as major independent regional player
- Transformation through digitalization and deployment of DOF

Strategic objectives

- Increase business and operational efficiency
- Reduce costs and maximize recovery
- Increase investment attractiveness of the asset in long term

Schlumberger

Asset Problems and Challenges

CHALLENGES

TIME & RESOURCES

High-well count assets (200 wells)

Manual and tedious screening of intervention opportunities

ANALYSIS

DATA

Different sources and type of data Too many factors and

criteria for manual analysis Difficult to analyze existing data Complicated reservoir with multizone structure Required proper water and pressure management

RESERVOIR

Active workover campaign

WORKOVER

PROGRAM

Growing number of problem wells and workovers

Two workover teams full utilized

PROBLEMS

Decision quality suffers because not enough time & resources

Unplanned stops are not analyzed systematically

No quantitatively analysis of lost production due to stops

Ineffective utilization of workover rigs and personal

Proposed solution: Well Portfolio Optimization (WPO)

<image>

Opportunities

- Increase Drawdown/ Upgrade Pump candidates
- Add Perforation candidates
- Reperforation/ Stimulation candidates
- Frac Stimulation Candidates
- Zone Change candidates
- Water Shut Off candidates
- Decrease Production candidates

Automation

Analytics components

- BHP & PI Modeling
- Automated production forecasting
- Chan analytics
- Analytic Hierarchy Process

Business Logic Customized the solution

Solution design

Screening | Water Control | Water Shut Off

Diagnose | Analytics engines

03-10

05-02

05-03

Schlumberger

01-10

Analytics Engines | AHP Ranking

Analytic Hierarchy Process (AHP) is used to analyze a multi-criteria decision analysis (MCDA) problem

- Reduce complex decisions to a series of pairwise comparison
- Synthesize both quantitative and qualitative criteria in objective manner
- Provide the capability of consistency checking
- Structure engineering decision making process into hierarchical decision trees

Schlumberger

WPO | Final candidates ranking

Respect to the budget	Rank	Well	WO Туре	Inc Prod (STB)	1. (5)	Exceed th	ne budget
	i 1	HOGL332	Squeeze	8207	160752	14	60
	i 2	13-36	Squeeze	6941	131610	12	60
	i 3	PVE2_0	Perf	5699	111279	13	60
	i 4	HOGL2	Perf	5175	95782	16	60
	i ⁵	16-04	Squeeze	3540	31347	33	60
	i 6	PVEC2	Squeeze	3457	27218	38	60
	i 7	PVED_0	Perf	2589	23431	34	60
	i 8	HOGL2	Squeeze	2805	13816	35	60
	ð 9	2362:B	Squeeze	2499	6232	41	60
	 D ¹⁰	HOGL732	Squeeze	2518	3100	55	60
Google	D 11	PVEA_0	Squeeze	1118	-38118	None	60
	_				-		
positive NPV negative NPV		positive NPV neg				gative N	IPV

Workover implementation | Well 116

Recommendation: Horizon change

Field implementation

WPO conclusion

Chan plot:

- Water breakthrough probability: 99%
- Remaining oil: 4.2%

Proposed horizons to change:

- Alb: oil rate increment 13 m3/d
- Ne-V-A: oil rate increment 6 m3/d

Workover implementation | Well P-15, 237, ОЦ-21

Well P-15 Field implementation:

- WCT reduced: 96% => 25%
- Oil rate increased: 1 => 40 m3/day

Well 237

Field implementation:

- WCT reduced: 98% => 15%
- Oil rate increased: 1 => 37 m3/day

Well OЦ-21 Field implementation:

- WCT reduced: 96% => 70%
- Oil rate increased: 1 => 20 m3/day

Schlumberger

Benefits & Deliverables

- Daily basis automatic screening
- Automatic problem well and cause of low productivity identification
- Quantitative analysis of best suitable type of workovers
- Ranking of most "desirable" candidates
- Standardized approach of candidate screening and workover type analysis
- Ongoing knowledge base update after implementation
- Automatic web reports

Thank you

Schlumberger-Private