

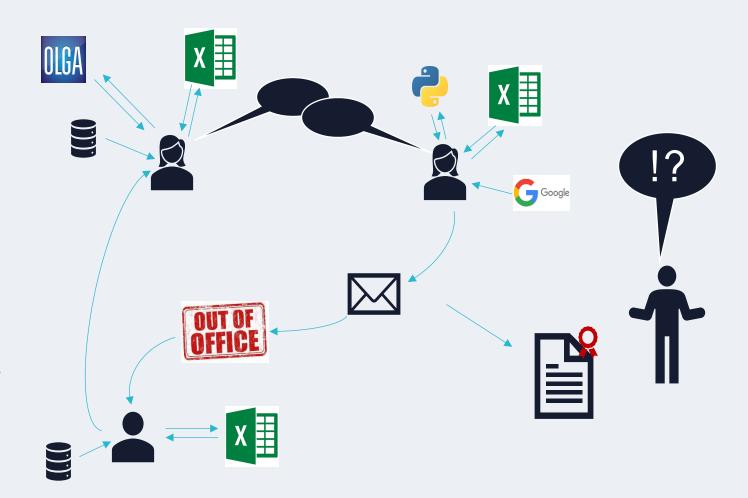
Automating OLGA with FLUX

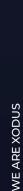
Chris Smith

Xodus Production Assurance Manager

Automating OLGA with FLUX

- Manual Engineering Workflow
- X Power of Automation for OLGA
- **X** FLUX
- X Value Realisation CCS Injection
- X Advanced Visualisation





Complex Engineering Workflows

RISKS

- Multiple data sources
- V Uncontrolled calculations
- Y Inefficiencies
- Y Communication
 - Y Revised Basis
 - Results between disciplines
 - Y Outcomes to stakeholders

X

Manual OLGA Parametric

Manual duration ~ 3 weeks

Traditionally would Analyse 20-50 sensitivity cases

Define basis & assumptions

2 days

Model Build

2 days

Create parametric matrix, run simulations & extract results

5 days

Extend matrix for better definition and re-run

3 days

Automated OLGA Workflow

Automated duration ~ 1 week

Can assess thousands of sensitivities in *less* time

Define basis & assumptions

2 days

Model Build / Generate Simulation File

2 days

Create parametric cases (sensitivities)

2,300 cases 30 seconds

Run simulations

~1day

Extract Relevant Data

1 hc

Visualise Data

30 seconds

Introducing FLUX

Xodus Inhouse Integrated Engineering Platform

WEB APPLICATION

Access Globally
Controlled QA'd Scripts and Calculations
Cross working locations
Client Access

EXECUTES AUTOMATED TASKS

Python Scripts
Controlled Calculations
Calls up Software – Executes Analysis
Extracts Results
Iterates to Solutions
Graphical Outputs

STORES DATA

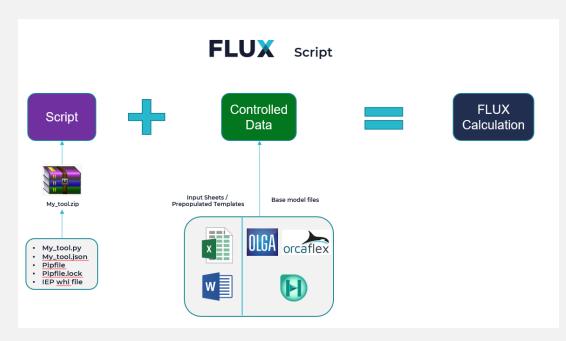
Digital Design Basis
Single Data Source for all Disciplines
Outputs from analysis held as Inputs for other disciplines
Management of Change Control

Create a Project

Create a Workspace

Upload your FLUX Script

Check-in / Check-out


Create a Calculation

Construct the Workflow

Execute a Calculation

View the Results

Execution History

Script:

Upload the approved script into the workspace

Controlled Data

The term Controlled Data refers to any data that is uploaded and stored in FLUX

- The version/upload history of the Controlled Data will be tracked
- The Controlled Data can be passed as inputs to Calculations.

Create a Project

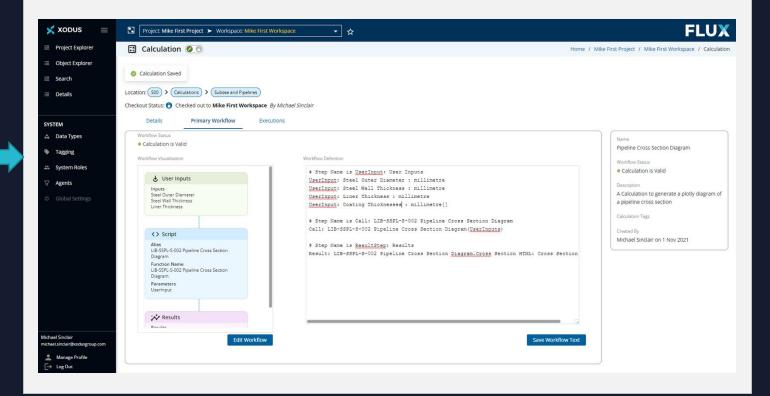
Create a Workspace

Upload Controlled Data

Check-in / Check-out

Create a Calculation

Construct the Workflow


Execute the Calculation

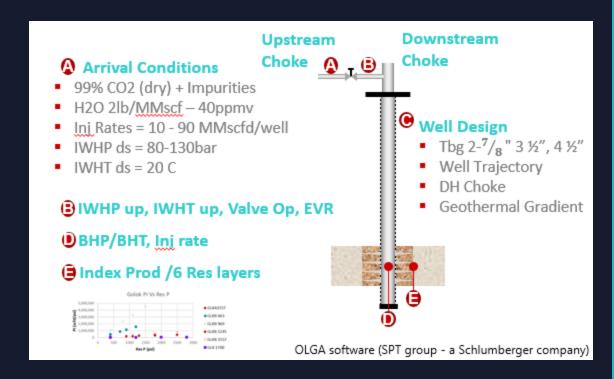
View the Results

Execution History

The Workflow is used to:

- Describe the inputs and outputs of the script(s) to be executed
- Assign Controlled Data to the script(s)
- Define the order of script(s) to be executed
- Define which outputs to be shown on the Results page on an execution

Example Automated Calculation - DNV RP501 Erosion

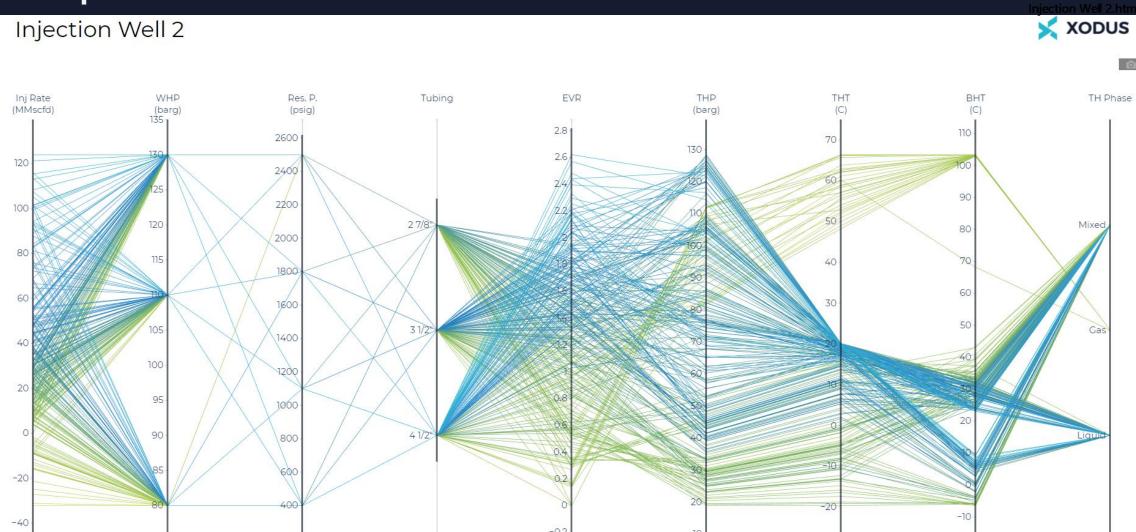

Calculation Name CCS Parametric Study - GLKB 1557					Workflow Designer
<> Script	Configure User Inputs				
Alias LIB-PA-002 OLGA Batch Generator and Executor Function Name LIB-PA-002 OLGA Batch Generator and Executor (v6)	Post Process Variables Erosion	Surge Mon	nentum		
(+)	Particle Density*	2420	kg/m3	②	
⊎ User Inputs	Particle Diameter*	0.003	metre	②	
Inputs	Pipeline Material*	Carbon Steel ▼	string	②	
Sample Timestamp Branch OLGA Variable Type	Sand Rate Calculation Method*	A - Based on Liquid/Ga 🔻	string	③	
+ 36 more	Gas Sand Rate*	0.1	lb/MMscfd	②	
(+)	Liquid Sand Rate*	1	lb/kstbd	•	
<> Script	Sand Concentration*	1	ppmw	⊚	
Alias LIB-PA-003 OLGA Post Processor Function Name	User Defined Sand Rate (If Using Method C)*	0	lb/MMscfd	⊚	
LIB-PA-003 OLGA Post Processor (v26)	Geometry Correction Factor*	4	dimensionless	②	
+	Bend Radius*	1.5	metre	③	
⊎ User Inputs					
Inputs Plot Name	Erosion				
\oplus	© ©	②	②	③	
Script (Outdated)	UserInput: Post Process Variables.Sand Kate Calcu UserInput: Post Process Variables.Gas Sand Rate :		Based on Liquid/G "Erosion"}	as Kates {"group": "Erosion"}	
Alias LIB-PA-004 OLGA Parallel Coordinate Plot Generator	UserInput: Post Process Variables.Liquid Sand Rat UserInput: Post Process Variables.Sand Concentrat	cion : ppmw = 1 { "group": "		(Hannaka HEnnakask)	0
Function Name					Cancel Save Workflow

FLUX CO₂ Wells Injection Case Study

CCS Feasibility Project

- X Injection into depleted (low pressure) Reservoirs
- Multiple Well Options and Injection Targets
- X Low Pressure Reservoirs
- X CO₂ Phase change risks

Value realisation of FLUX


- X A typical 4 week job completed within 1 week
 - X A total of 1,300 sensitivity cases were assessed and communicated through FLUX
 - X Early insights dramatically streamline early phase engineering
 - X Identified that smaller tubing sizes could be discounted early (saved well engineering on non practical scenarios)
- X Additional focus areas were assessed quickly and efficiently
 - X Option and benefit of a downhole choke assessed within a day
- X Data visualisations proved a powerful communication tool

Example Interactive Multi-Parameter Plot

200

Thank you for your attention

Questions?