

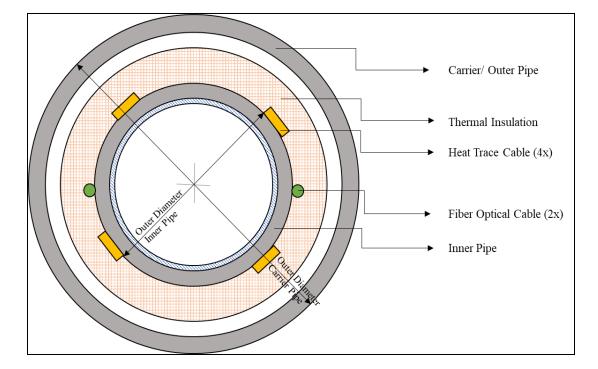
Fenja Development Automated Flow Assurance System and Associated Real-time Advisory Modules

Alireza Forooghi, Lead Production & Flow Assurance Engineer

Neptune Energy

Outline

- Fenja Field Overview
- Flow Assurance Challenges in Fenja
- Fenja Digital Twin
- Operational Automated Advisors
- Integrity and Safety Automated Advisors
- Conclusions


Fenja Development Options

- Fenja was discovered in 2014
- Located offshore Norway about 35 km southwest of the Njord Field
- Field is developed with two subsea templates and subsea wells tied back to the Njord A facility
- Well fluid will be commingled at the subsea template prior to being routed through a single pipeline to the Njord A

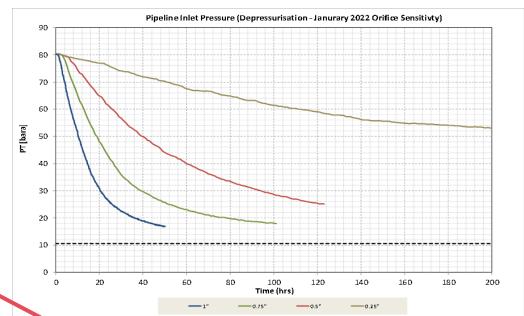
 MULTIPHASE PRODUCTION LINE
 UMBILICAL
 INFIELD UMBILICAL JUMPER
 GAS INJECTION/LIFT LINE
 GAS INJECTION/LIFT JUMPER
 WATER INJECTION LINE
 WATER INJECTION JUMPER

Flow Assurance Challenges in Fenja Development

- Multiphase production via a single long tie-back pipeline length (35 km) in cold arctic environment
- Wax and Gelling Risk
 - o High Wax Content,
 - Wax Appearance Temp: 39°C,
 - Pour Point Temp: 27°C
- Hydrate Risk
 - Hydrate Formation Temp: 18°-24°C,
- Liquid Management
 - Host facility constraints

• World's longest ETH PIP as the primary layer of protection for Wax & Hydrate

Why Active Heating is Required for Wax Management?


- The active heating system constitutes the only layer of protection against gel blockage in the pipeline after shutdown.
- The length of gelled section is dictated by the oil content in the pipeline after shutdown and depressurization

Flowline Condition	Total length of Blocked Sections (m)	Number of Sections	Length of Longest Individual Sections (km)	Gel Strength at 4°C (Pa)	Differential Pressure to Break the Gel (bar)
Shutdown	16000	12	5	180	223
Shutdown	16000	12	5	350	434
Depressurized	8000	12	4	180	133
Depressurized	8000	12	4	350	259

Why Active Heating is Required for Hydrate Management

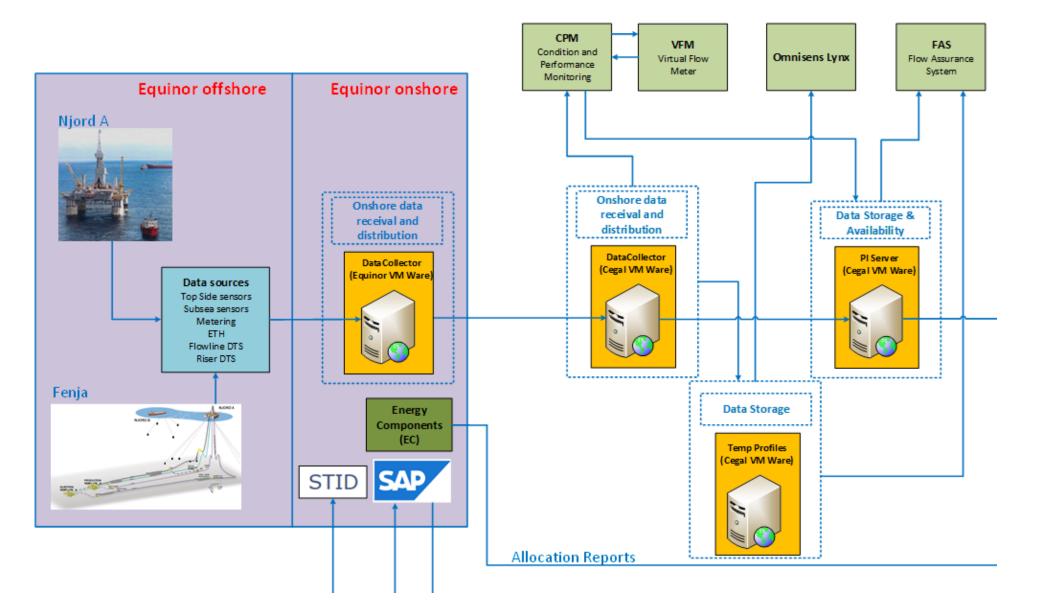
- Hydrate Management Challenges
 - Depressurization is identified as a challenge during early field life production
 - Low Pressure start-up is technically infeasible

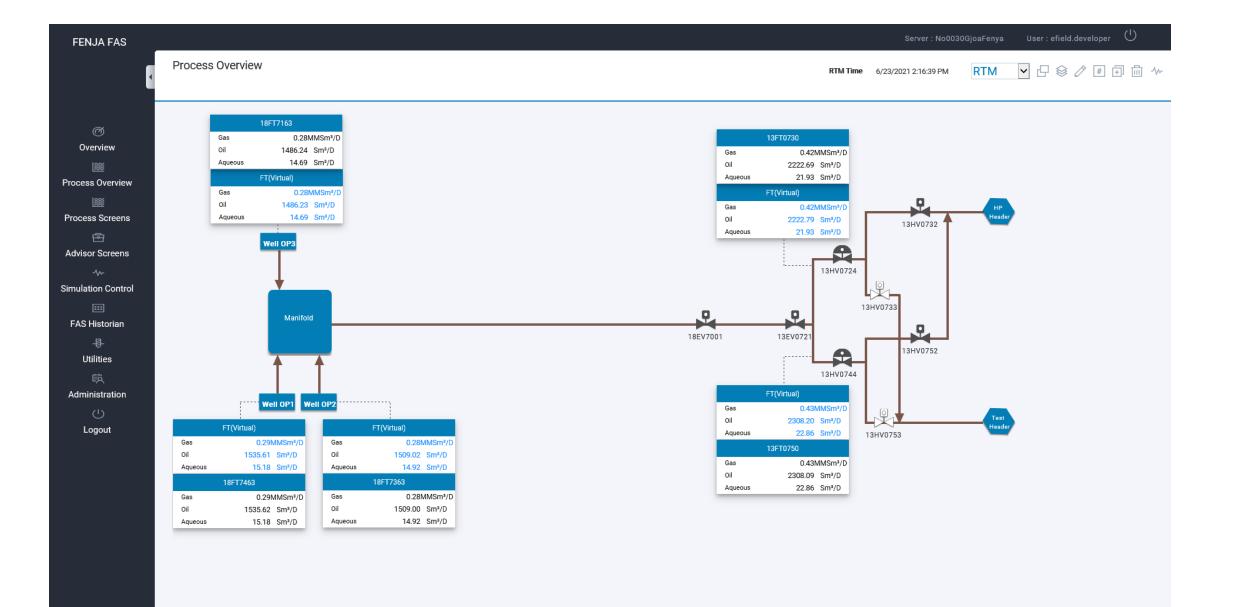
Liquid volume > available topside liquid surge handling volume

ENERG

		Restart	Final Pressu		Max DTH		Pipeline Inlet	Hyonate Safe	Time to Hydrate Safe	Accum	ulated L [m3]	iquids	Accumul ated	Minimum
Pipeline does not reach	Case	Time (to nearest 1 hr before CDT)		Riserbase Spool	PIPINLET		Final Tempera ture [oC]		Pressure [h] @ Pipeline Inlet	Oil	Water	Liquid	Gas Mass Volume [Te]	Temp D/S 'LEAK' [oC]
hydrate safe	Jan-21	50	18.06	6.9	1.12	-1.72	6.7	10.5	NOT POSSIBLE	257	0.36	258	126.5	-23.2
riyurate sale	lan-22	11	16.40	5.7	-0.38	-2.46	7.5	10.5	NOT POSSIBLE	348	0.38	348	149.9	-22.5
pressure	Apr-23	50	14.59	4.5	0.23	-1.31	6.5	10.0	NOT POSSIBLE	211	0.28	212	162.8	-35.3
	Jun-25	49	11.22	4.6	-8.75	0.86	14.5	9.0	NOT POSSIBLE	16	1.25	17	169.2	-61.4
	Aug-27	44	7.84	3.8	-11.83	-0.43	14.9	8.8	41	3	0.01	3	142.9	-54.5
	Oct-29	38	7.57	3.9	-12.16	-2.19	15.2	8.8	32	2	0.04	2	134.4	-52.2
	Dec-31	36	7.03	3.1	-14.53	-4.05	16.9	8.7	40	2	0.04	2	135.0	-53.4
	Feb-34	38	7.25	3.1	-15.20	-3.93	17.8	8.7	38	3	0.15	3	134.4	-53.9
	Apr-36	38	7.99	3.5	-16.46	-5.12	19.8	8.7	45	2	0.13	2	130.6	-51.3

Fenja FAS & Automated Advisory Modules


- Fenja Digital Twin is designed not only to enable continuous monitoring, but also to provide advisories and operational guidelines for key operations:
- Fenja FAS Modes of Operation
 - Real-Time Mode
 - Look-Ahead Mode
 - What-if-Mode
 - Replay Mode


• Fenja Advisory Modules

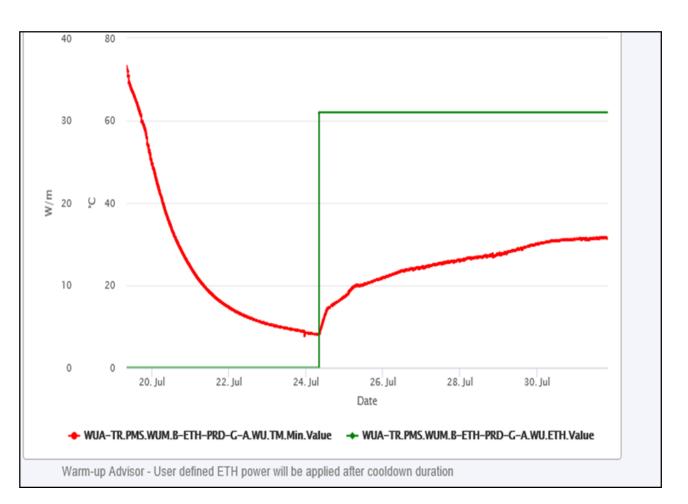
- No-touch time (NTT)
- Warm up and keep warm operations
- Leak detection
- Sand Transportation & Risk of erosion
- Slugging and surge handling
- Emulsions

Fenja Digital Twin Data Flow Diagram

Schlumberger Legend Field OEM Hydrate LDA LAM NTT WU_KW

No Touch Time Advisor

- Predictive simulation using online lookahead mode
- Performs a predefined shut-in sequence using real-time field conditions
- Simulates into future to predict NTT for key locations
- Alarm/warning raised if temperature drops below hydrate and pour point temperatures alarm/warning threshold
- It runs automatically without any human intervention and provides updated information in real-time


TT Simulation Control xrizon 4.00 hr Simulation Progress 4.00 hr chedule 12.00 hr RTM Shut-In Status	Model Status Paused NTT Status Ready, Awaiting scheduled time.	Simulation Speed Restart NTT
ydrate - NTT Settings Hydrate - NTT Output Jumper ETH Pipeline Riser excessurization Time (000 hr No Touch Time (httmm) > 250 > 250 > 250	Wax - NTT Settings Pour Point Temperature 2700 °C	Wax - NTT Outputs Jumper ETH Pipeline
epressurization Time (0.00 hr No-Touch Time (hh.mm) > 3.59 > 3.59 > 3.59 ydrate Temp Margin (2.00 d*C	Pour Point Temperature 27.00 °C Wax Apperance Temp 39.00 °C	Pour Point- NTT (hh:mm) > 3:59 > 3:59 > 3:59 > 3:59 > 3:59 > 3:59 > 3:59 > 3:59 2
Jumper ETH Riser Hydrate Risk - DTHYDRATE	Jumper ETH Riser Gelling Risk	TM_FLUID
-324 48	-324 72	
E -328.4 ^D / ₁ 35 -328.8 24	E -326.4 V 48 -328.8 24	
-331.2 12 0 100 200 300 400 500 m	-331.2 0 0 100 200	300 400 500 m
PMS.CDA.HYD.8-JUMPER-PRD-G-A.DTHYDRATE 1.Final PMS.CDA.HYD.8-JUMPER-PRD-G-A.DTHYDRATE 2.Final PMS.CDA.HYD.8-JUMPER-PRD-G-A.DTHYDRATE 3.Final PMS.CDA.HYD.8-JUMPER-PRD-G-A.YROU		PMS.CDA.PPT.B-JUMPER-PRD-C-A.Value.2.Final PMS.CDA.PPT.B-JUMPER-PRD-C-A.Value.4.Final PMS.OLCA.B-JUMPER-PRD-C-A.YBOU

Warm-up and Keep Warm Advisors

- It provides guidance for ETH pipeline operations. It has two distinct features:

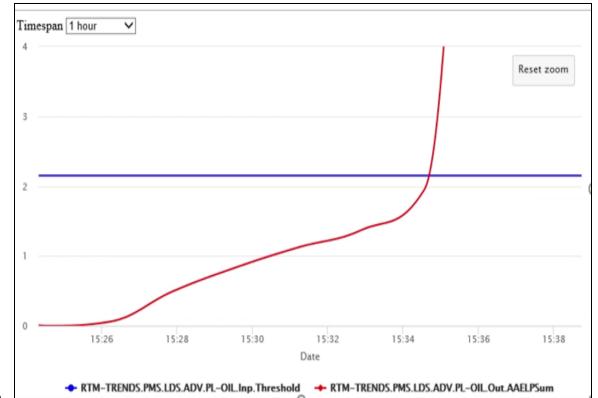
 Keep warm: simulate minimum power requirement to stay outside hydrate risk
 - 2) Warm up: simulate time required to warm up the pipeline for restart
- Using real-time field conditions, simulates into future to predict time and power required for ETH operation
- It runs automatically without any human intervention and provides updated information in real-time

Power (green), Min Temperature in Pipeline (Red)

Leak Detection Advisor Working Principles

- Digital Twin simulates the system behavior without any leaks
- Field measurements that deviate from the real-time model in case of a leak
- Leak Signatures that generate a warning and subsequently an alarm when the signatures indicate a change in the operating point outside the Expected Operating Region (EOR)

Leak Signatures – Consider field data, simulated data and ambient condition


Label	Status	Active	Threshold	Signature
Well OP1				
18-FT-7463-QGST	•	Enabled V	0.25	0.07
18-FT-7463-QOST	•	Enabled V	0.25	0.07
18-FT-7463-QWST	•	Enabled V	0.25	0.07
18-PZT-7441	•	Enabled V	0.25	-0.02
18-TT-7441	•	Enabled V	0.25	0.00
18-PT-7463	•	Enabled V	0.25	-0.02
18-TT-7463	•	Enabled V	0.25	0.00
18-PZT-7443	•	Enabled 🗸	0.25	-0.10
18-TT-7443	•	Enabled V	0.25	0.00

Example of leak signatures at OP1 wellhead

Leak Detection Test Setup and Results

- Testing Setup:
 - To replicate a leak scenario, a FIELD model was made
 - Two models (FIELD and Digital Twin RTM) run in parallel and independently
- Testing Outcomes:
 - \circ Reliable operation with high uptime
 - $\,\circ\,$ False alarms are rare
 - $\,\circ\,$ Small Leak (1% of pipe dia.): 1 hour
 - Moderate Leak (>3% pipe dia.): 15 mins
 - Time to detect a leak depends on various factors, such as operating conditions in the field, leak size, leak location, etc.

Sum of leak signature value (red) Threshold value (blue)

Sand Deposition and Erosion Risk Advisor

- Instant warning if any of the network sections are experiencing erosional issues
- Advisor monitors the erosion risk at key locations:
 - Production choke downstream piping
 - Production jumper outlet
 - Pipeline outlet
 - Production riser outlet
- Erosion risk static curves can be updated automatically based on field sand production data:
 - Average sand density and particle diameter
 - Average sand production rate (either manual or from sand detector measurements)

Different erosion risk boundaries based on different correlations Green color dot shows current operating data

Conclusions

- Fenja Digital Twin is deployed to optimize operations and improve surveillance.
- By integrating the automated advisors with the real-time surveillance, this solution will achieve an increased level of accuracy, consistency and avoiding human errors.
- These automated advisors help identifying operational risks (wax, gelling and hydrate formation) in advance.
- Keep Warm & Warm-up advisor provide guidance to optimize the power consumption during various operations.
- A novel leak detection solution incorporating signature and regions definitions ensures "Top-ofthe-range" leak detection for long multiphase tie-back pipeline.
- This solution promotes interaction among the various disciplines involved in operations into a single platform.

Acknowledgement

• I would like to express my deep appreciations to Neptune Energy and Schlumberger management for permitting this presentation in Digital Forum 2022.