Cooper Basin Moomba CCS Project

• Capture 1.7 MTPA CO$_2$ from Moomba Gas Plant and sequester in depleted gas reservoirs in Cooper Basin
• Dense phase CO$_2$ transmission ~ 50km pipeline and 4 injection wells
CCS Pipeline Depressurisation

- Depressurisation is defined as the controlled disposal of pressurised fluids to a flare or vent system.
- Systems are depressured for maintenance or in an emergency from operating pressure to atmospheric pressure.
- Fairly simple and routine procedure in natural gas pipeline.
- Much more complicated in CCS...
CO₂ Joule-Thomson Effect

- JT cooling refers to the drop in temperature that occurs when a gas such as CO₂ expands from high pressure to low pressure at constant enthalpy.

- JT coefficient of CO₂ is much higher than O&G fluids, therefore significantly larger temperature drops when depressuring down to -88°C.

- Full depressurisation will lead to excessive JT cooling with the risk of solid CO₂ “snow.”

- Freezing water will occur if the water dewpoint is reached.
Why is this a problem?

• Pipeline normal operating conditions ~146 barg
• Low temperatures during depressurization down to -88°C
• Material selection to design for all scenarios at extreme ends of design becomes very expensive

Challenge:
• Review system to see if any mitigations exist to allow for the selection of a piping spec that does not need to cater for both extremes.

Solution:
• Use of Schlumberger’s Symmetry Dynamics to develop dynamic simulation of blowdown procedure
• Determine what the minimum metal temperature of piping and corresponding pressures will be
Case Study - Proposed Solution

Step 1

- Dissipate as much pressure as possible into the injection wells – pipeline pressure reduced from 146 barg to 80 barg

- Advantages:
 - Lower pressure starting point for full depressurization results in less JT cooling effects
 - Blowdown system only needs to be designed for 80 barg pressures
 - Sequester as much CO₂ as possible
Case Study – Upstream of Blowdown Valve

- In 28 hours the minimum temperature seen in the pipeline at any point in time is -27°C.
- Minimum temperature occurs in the Moomba-Marabooka section and it occurs towards the end of the depressurisation.
- The location of the minimum temperature changes over time. The absolute lowest temperature occurs around 1-1.5 km from the Moomba station.

![Graph showing minimum fluid temperature in the pipeline over time.](image1)

![Graph showing pressure in the pipeline during depressurisation.](image2)
Step 2

- Controlled blowdown over prolonged period of time to manage JT cooling impact
- Process Pressure: 80 bar (max operating 146 bar)
- Process Temperature: 25°C (winter) 55°C (summer)
- Blowdown valve size: 6”
- Restriction orifice size: 50mm
Case Study - Modelling Challenge

- Carbon steel has a limit of -45°C for pressures up to 153.2 bar.
- Where is the cut off point for using carbon steel within the blowdown system?
- Modelling in Symmetry Dynamics can show us how the wall temperature will change at each segment along the blowdown line.
Case Study - Building the Model

- System volume = 2356m3
- The pipe between the blowdown valve and the restriction orifice is 100m
- Blowdown valve is open by 10% until the system is pressurized before being fully open
- Summer process (55°C) case not modelled as the winter case of (25°C) presents worst case for low piping temperatures.

Assumptions
- 6" Blowdown valve VA00027 opens linearly
- Valve opening is ramping opening (0.33%/s)

Aim
- Identify a valve size that allows downstream piping to stay within CS limits
Case Study – Dynamic Control
Case Study – Dynamics Running
Case Study - Small Control Valve

Temperature profiles for a valve Cv of 2
Operating conditions of 80barg and 25°C
Piping wall breaches the -45°C limit
The piping wall temperature (orange) is -60°C
Case Study - Small Control Valve

Pressure profiled for a valve CV of 2
Operating conditions of 80 barg and 25°C

Maximum pressure (green) is 5 bar
After 24hrs the pressure of the system is 69 bar
Temperature profiles for a valve CV of 53
Operating conditions of 80barg and 25°C
Process fluid temperature (green) lowest is -43°C
The piping wall temperature (orange) is -44°C
Case Study - Optimum Control Valve Size

Pressure profiled for a valve CV of 53
Operating conditions of 80barg and 25°C
Maximum pressure (green) is 47 bar
After 24hrs the pressure of the system is 36.6 bar
Complete depressurisation takes place after 48 hours
Case Study - Pressure Sensitivity

- Max operating pressure 146 bar vs 80 bar
- Operating temperature 25°C
- Lower operating pressure for the same valve Cv results in the worst case for low piping wall temperatures
- Higher operating pressure for the same valve Cv results in the worst case for maximum pressure downstream the valve
Case Study – Project Recommendations

- Two stage depressurisation required
- Maximum blowdown valve size of Cv 53 & RO size 50mm
- Minimum piping wall temperature downstream of blowdown valve -44°C
- Maximum pressure seen downstream of blowdown valve 47 barg
- Entire duration of second stage of blowdown (from 80 to 0 barg) to take 48 hours
Using Schlumberger’s Symmetry Dynamics we were able to provide a solution to the project with confidence that carbon steel minimum design temperatures would not be breached.

Design conditions of blowdown system reduced:

- Before: 146 barg and -88°C
- After: 46 barg and -44°C

Enabled significant cost savings to the project not requiring expensive specialist materials

Added benefit of Symmetry Dynamics was being able to perform blowdown valve sizing