Ongoing hydrogen projects in porous reservoir in Hungary

Connecting for a New Future

Schlumberger Digital Forum 2022 September 20-22 | KKL Luzern, Switzerland

Tamás Mérő

Reservoir Team Leader & technical and innovation project manager of hydrogen technologies

Gáspár Geönczeöl – co-author

Reservoir expert – Technical Operation

Agenda

01	02	03	04
Introduction of HGS Ltd.	Main characteristics of Aquamarine project	HyUsPRe project – R&D programme	Expected physical- chemical reactions
05	06		
Compositional modelling of H ₂ , H ₂ S and CO ₂	Conclusion		

Introduction of Hungarian Gas Storage

Our main activities

- Underground gas storage operations
- **Regulated activities** (Mining authorities, Hungarian Energy Authority, Emergency management)
- Focus on gas storage services : not allowed to transport or trading natural gas
- Flexibility services provider: Demand-supply balancing operations
- **Crucial pillar** in energy security of supply
- Electricity generation permit
- 4 gas storage sites in Hungary
- Total of **4,4 bcm working gas capacity** (HU gas consumption is around 10 bcm/year) at HGS Ltd
- Sole shareholder: MVM Energy (**100% state owned** company)

Hydrogen - How ?

Main characteristics of Project Aquamarine

- **2.0 MW electrolyzer** including H₂ compressor unit with buffer tanks
- Energy storage including H₂ production, blended gas to existing methane fueled systems, and also send out to transmission system
- 1 February 2021 31 January 2024
- Long-term R&D programs with 5 Hungarian universities and research institutes
- Continuous pioneering in the recent regulatory environment
- **Pilot Project:** effects of hydrogen blended natural gas on the existing gas infrastructure

Supporter

5

Hydrogen utilisation schematic in Kardoskút UGS

Supporter:

Research of materials – Hydrogen effects

Hydrogenation vessel design (BME)

MFGT's new test piece (patent application)

Hydrogen permeation test chamber

Supporter:

HyUSPRe consortium

Vinderground Storage in Porous Reservoirs **yUSPRe**

Source: Heinemann, N., Alcalde, J., Miocic, J. M., Hanax, S. J. T., Kallmeyer, J., Ostertag-Henning, C., Hassanpouryouzband, A., Thaysen, E. M., Strobel, G. J., Schmidt-Hattenberger, C., Edlmann, K., Wilkinson, M., Bentham, M., Haszeldine, R. S., Carbonell, R., & Rudloff, A. (2021). Enabling large-scale hydrogen storage in porous media - the scientific challenges: Energy & Environmental Science. Energy Environ. Sci.. https://doi.org/10.1039/D0EE03536J

8

Research activities

Microbiological activity in the reservoir

- Loss of H₂ through microbial metabolic processes (methanogenesis, sulfate-reduction and acetogenesis)
- Generation of H₂S through microbial sulfate-reduction
- Loss of H₂ injectivity due to near well bore plugging by bio-based solids (microbes, Extracellular Polymeric Substances (EPS), FeS, etc.)

Case Study – Kardoskút UGS

11

Geological Summary

Pusztaszőlős Field is a reservoir triple, located in South Hungarian neogene formations having a paleozoic basement with an area of c. 4.16 km2

I. – Selected for hydrogen injection

II. – UGS gas reservoir

III. – UGS gas reservoir

Average depth is ranging from 995 to 1145 m ss

The three reservoirs are separated by shale, shaly marl as seals

Average reservoir thicknesses are ~10, ~16 and ~31 m

Simulation Summary

Main rock properties/characteristics are as follows:

Rock type	Unsonsolidated sandstone, aleurolite and shaly marl
Wettability	Strongly water wet
Average connate water saturation	$S_{wc} = \sim 0.1$
Average porosity, average	22 - 30 %
Permeability range	~300 – 400 mD

Reservoir	# of sublayers
./1.	15
./2.	6
III./3.	10
П.	10
Ι.	15

Component	Mol%
methane	95.7200
ethane	1.8175
propane	0.3634
i-butane	0.0553
n-butane	0.0559
i-pentane	0.0120
n-pentane	0.0086
hexane	0.0044
heptane	0.0029
octane+	0.0015
N ₂	1.0300
CO ₂	0.9285
Gas density, kg/m ³	0.713
Relative density, kg/m ³	0.58

Simulation Dynamic Model (Tartan grid)

From Black-Oil Eclipse 100 to Compositional Eclipse 300

Component Name	Critical Temperature K	Critical Pressure Barsa	Molecular Weight Kg/Kg-M	Critical Volume M3/Kg-M	Critical Z-factor
H2	15.42000	12.99000	2.020000	0.3020107E-01	0.3060000
C02	286.7600	73.87000	44.01000	0.8843552E-01	0.2740000
C1	200.0000	50.00000	18.05000	0.8680129E-01	0.2610000
H2S	355.8200	89.37000	34.12000	0.9334980E-01	0.2820000

15

From Eclipse 100 to Eclipse 300 - Initialization

FIP Run on 3,	/06/2022 at 09	Fluid i 0:08:21	n place r version 2	eport 021.2 cpu	0.67 elapsed	0.00000 1.44 memory	Days repo 45 Mb	ort step 0,	1 Jan 2022
Fluid in p	place totals								
Average p	ressure PV we HCPV	eighted: weighte	d:	111.241 Barsa 110.656 Barsa					
Total por	e volume at P((ref)		20.461579	M RM3				
Total por	e volume			20.461737	M RM3				
Hydrocarbo	on pore volume	2		3.580365	M RM3				
Average X Average Y Average Z Average po Average co	permeability permeability permeability orosity BV wei ell thickness	BV weig BV weig BV weig ighted DX*DY w	hted hted hted eighted	277.364294 277.364294 277.364294 0.291413 0.569991	MDarcy MDarcy MDarcy M3/M3 Metres				
Average o: Reservoir	il saturat volume of oil	ion l		0.000000 0.000000	RМЗ				
Average wa Reservoir	ater saturati volume of wat	ion ter		0.825021 16.881372	M RM3				
Average ga Reservoir	as saturati volume of gas	ion 5		0.174979 3.580365	M RM3				
Moles		Surface	volume	Mass		Material balance			
Water HydroC	884.1245 15.0137	560 748	M Kg-M M Kg-M	16.398130 359.694197	M SM3 M SM3	15927.503943	M Kg	1.000000	
Moles		Wet gas	volume	Mass		Material balance	Mole fractio		
H2 CO2 C1 H2S	0.0000 150137.4782 14.8630 0.0000	000 269 510 000	Kg-M Kg-M M Kg-M Kg-M	0.00000 3.596942 356.097255 0.000000	SM3 M SM3 M SM3 SM3 SM3	0.000000 6.607550 268.288167 0.000000	Kg M Kg M Kg Kg	1.000000 1.000000 1.000000 1.000000	0.000000 0.010000 0.990000 0.000000
Average hy Average wa	ydrocarbon mo] ater mo]	lar dens	ity	0.734 Kg-M/ 43 209 Kg-M/	/RM3 /RM3		0		

HGS A AQUAMARINE

Molecular diffusion

- Effective molecular diffusion coefficients
- Mechanical dispersivities
- Relative permeability curves
- Validate compositional modelling

HGS / Powered by MVM

- We have developed a simulation model to follow the movement of injected hydrogen in the reservoir
- This model was used to determine the losses of hydrogen due to diffusion and to other processes (dissolution, methanisation, etc.)
- Hydrogen natural gas mixture is actually injected into a porous gas reservoir (10 vol% H2)

Vapour component mole fraction

Microbiological processes

Microorganisms can also turn H2 into methane, model must be matched against experiments

How much percent of H2 can be produced after 1 cycle ?

Conclusion

Sector coupling

flexible services

Hydrogen storage is one of the **main pillars** of Hungary's National Hydrogen Strategy

Long-term collaboration with European Research Institutes, Universities and Gas Storage Companies

Consortium for **developing hydrogen technologies** in UGS circumstances

Amendment of the mining law – in progress

Matchmaking of our ongoing projects – fuel cells, LOHC, coating, methanation

Aquamarine + (2023): Knowledge Center of H2 Technologies

Integration of new hydrogen technologies in existing infrastructure Alternative hydrogen storage technologies

Demonstration plant in Kardoskút UGS

Our partnerships

Thank you for your kind attention

<u>merot@mfgt.hu</u> geonczeolg@mfgt.hu

Supporter:

