Enhancing Waterflooding Performance
On the Path to Autonomous Operations

Camilo Tellez
Central Area Development Team Leader
Agenda

Field Context

Challenges

Proposed Solution

Way Forward
Overview

Summary
- Several fields scattered over ~800 Km2 (NS)
- Reservoir management currently migrating from primary to secondary recovery

Subsurface:
- Depleted reservoirs with limited active aquifer

Facilities:
- Scattered in small clusters
- Power reliability one of main concerns
Business Challenges

• Time to decision to meet production targets
• Inefficient optimization system.
• Generate actionable insights on waterflood management
Technical Challenges

- Primary recovery mindset and lack of previous experience in waterflooding
Technical Challenges

- Primary recovery mindset and lack of previous experience in waterflooding
- Combination of deviated injector wells and deviated/horizontal producer wells
Technical Challenges

- Primary recovery mindset & lack of previous experience in waterflooding
- Combination of deviated injector wells and deviated/horizontal producer wells
- Steep decline with early water breakthrough
Technical Challenges

- Primary recovery mindset. No previous experience operating assets under water injection recovery
- Combination of deviated injector wells and deviated/horizontal producer wells
- Steep decline with early water breakthrough
- Fluid handling restrictions (fluid transfer process to processing station).
The Solution: AI driven waterflood optimization

Customized decision support system for operational pattern flood optimization
- Physics based models
- AI driven workflows
The Solution Development Approach – Design Thinking & Agile

EXPERIMENTAL PROTOTYPE

Prove and demonstrate that it can be done!

DEPLOYABLE PROTOTYPE

Validate and use in selected pilot project(s).

Intense collaboration, quick prototyping and field trial, Refine and mature for operational use
Waterflood Optimization Framework
Solution Overview

Models & Pattern Analysis
- Observed data
- Modelling (Physics, AI/ML)
- Pattern analysis

Decision Analysis & Management
- Pattern balancing
- What-if scenarios
- General insights
- Short term and mid-term forecasts

Actions
- Recommended production and injection
- Remedial operations
- Field implementation
- Monitoring & Surveillance
ML Assisted Physics Model

STEP CHANGE IN PERFORMANCE

- Field pilot test reduced time to rebalance patterns from 23 hrs ➔ 5 hrs
Proven Pattern Balancing Algorithm (PFM)

Robustness Pattern Balance Algorithm and Forecasting Capability

- Smart algorithm for allocation factors

What-If Capability

- What-If using operational parameters
- Unscheduled events
Waterflood Operations Surveillance Dashboards

Preserve integrated reservoir management with optimum pattern balance
Value Delivered

Time to decision
- Improved analysis efficiency by 80%
- Optimization time for 40 wells from 23 to 5 hrs

Operational optimization
- Proactive response to operational upsets (What if with iPFM)
- Reducing field visits & HSE exposure

Actionable insights
- Reliable 90 days forecast with uncertainty
- Better understanding of injection-production relationship
Towards Autonomous Waterflood Operations

Driving to Location Reduction (10 to 3 visits)

CO₂ Emissions Reduction

Reduce Energy Consumption (~ 150 kW)

Increase Operational Decisions

70 %

0.6 Ton/month

17%

30%

Digital Architecture

Recommended operational settings

Data input flow

Visualisation

Agora

Communication

Satellite (Agora)

Fiber Optic

Control & Automation

sensia

Edge Computing

Agora

Smart Physical Assets

Excellence in Execution
Conclusions

- Waterflood Optimization Framework that can support future Autonomous Digital Operations

- Injection pattern analysis and optimization tool for operational decision situations

- Design thinking approach: very effective to move from innovative idea into practical solution.