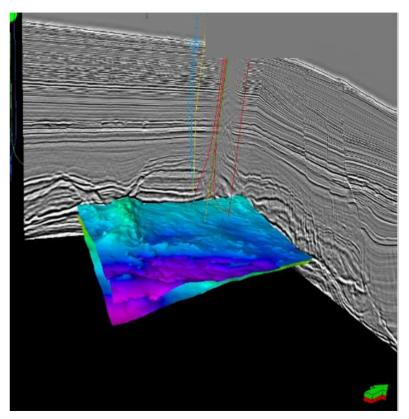

Petrobras Reservoir Digital Journey: from on-premise solutions to working on the cloud

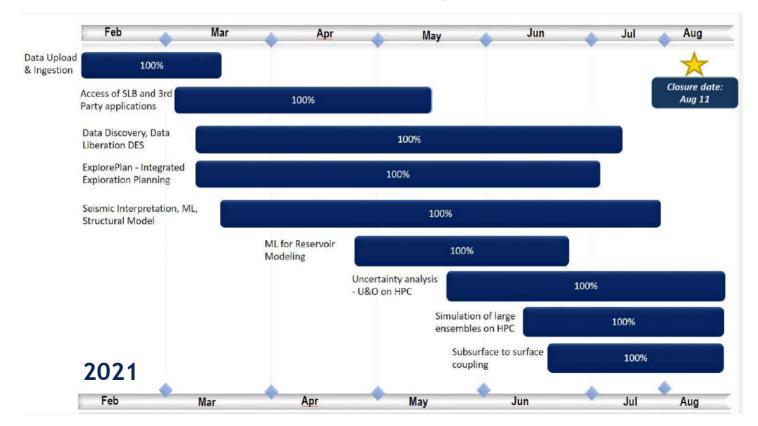
Rodrigo Link Federizzi
September 2022

On-premise solutions and the move to the cloud

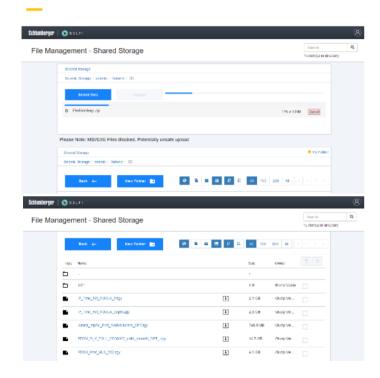


Two fields were selected as targets

Four terabytes of data (Exploration + Reservoir)

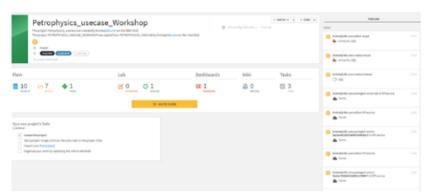

- Seismic data
- Interpreted horizons
- Well data
- Full projects (Seis+Horiz+Well)

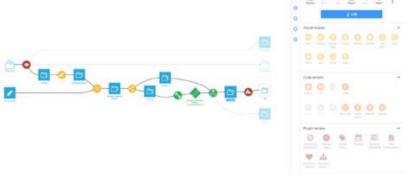
Salt top and base

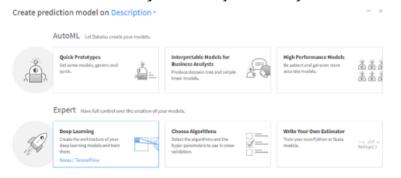


Validation of DELFI and its use on the targets

Data Management Interface



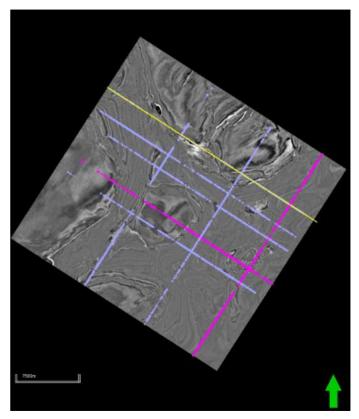




Analytics Workspace + Al Workspace

Project history and analysis

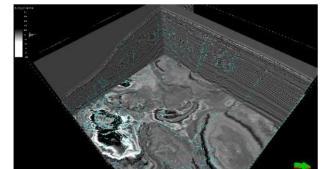
Data transformation flow



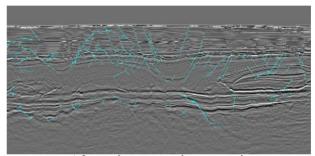
Automated Fault Extraction

Machine Learning Applied to Seismic Interpretation

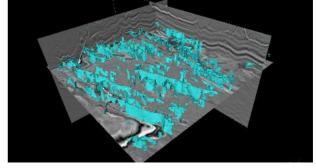
- Pre-trained neural network for fault identification
- Few lines manually interpreted
- Expansion to full seismic volume



Initial input from user



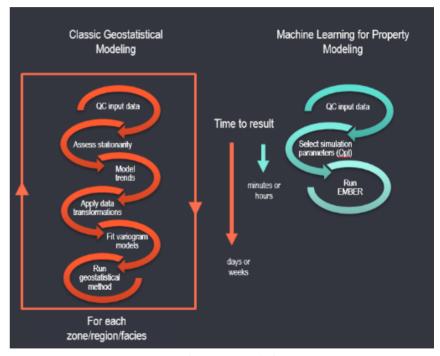
Interpreter's time is spent validating, in quality control and model construction


Initial interpretation

Mapping the full volume

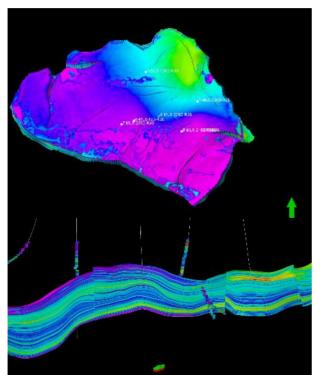
After the neural network

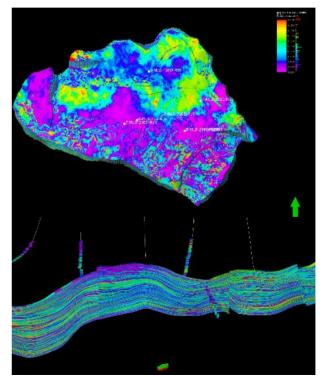
Schlumberger-Private


Large number of faults, big and small

Using more data to model properties

Machine Learning for modeling


- Choosing data input
- Selecting parameter model
- Generating model



Data driven modeling

Machine Learning assisted geostatical modeling

Porosity model with kriging

Schlumberger-PrivatPorosity model with kriging+Al

Simulation of scenarios

Simulations on the Cloud

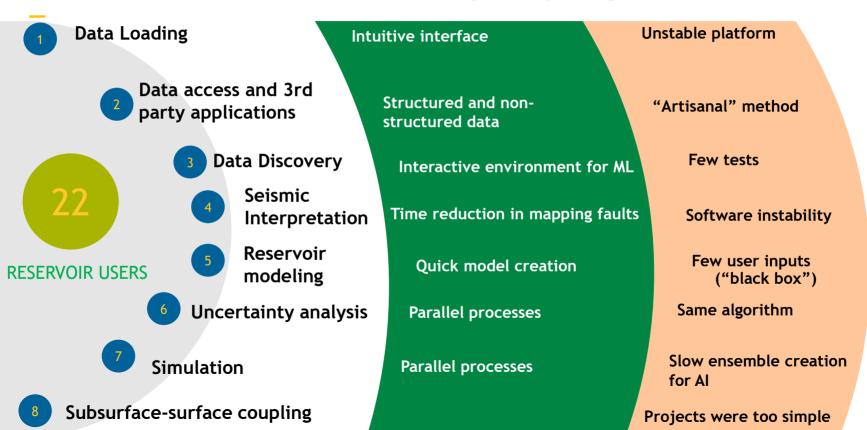
- Parallel processes
- Quick results
- Cost per simulation

```
CAProgram Files\Schlumberge\Petrel 2020\Fexyflumexe
 :\Petrel\HPC\7adb88e8-2b66-4dcd-8868-cfabd22f83d8\experiment 081 1683 008\experiment.log
 \Petrel\HPC\7adb86e8-2b66-4dod-8868-cfabd22f83d8\experiment_981_1682_998\experiment.log
 Petrel\HPC\7adb80e8-2b66-4dcd-8868-cfabd22f83d8\experiment_981_1681_898\experiment.log
 Petrel\HPC\7adb89e8-2b66-4dcd-8868-cfabd22f83d8\experiment 981 1688 898\experiment.log
 \Petrel\HPC\7adb80e8-2b66-4dcd-8868-cfabd22f83d8\experiment 981 8984 808\experiment.log
  Petrol\HPC\7adb88e8-2b66-4dcd-8868-cfabd22f83d8\experiment 881 8883 888\experiment.log
 \Petral\HPC\7adb86e8-2b66-4dcd-8868-cfabd22f63d8\experiment 001 0005 008\experiment.log
 \Petrel\HPC\7adb86e8-2b66-4dcd-8868-cfabd22f83d8\experiment 981 8885 898\experiment.log
 \Petrel\HPC\7adb88e8-2b66-4dcd-8868-cfabd22f83d8\experiment_981_1689_898\experiment_log
 Petrel\HPC\7adb89e8-2b66-4dcd-8868-cfabd22f83d8\experiment 981 988 998\experiment.log
  Petrel\HPC\7adb00e0-2b66-4dcd-8060-cfabd22f03d0\experiment_001_0009_000\experiment.log
  Petrel\HPC\7adb88e8-2b66-4dcd-8868-cfabd22f83d8\experiment 881 8881 888\experiment.log
  Petrol\HPC\7adb88e8-2b66-4dcd-8868-cfabd22f83d8\experiment 881 8888 888\experiment.log
 \Petre1\HPC\7adb89e8-2b66-4dcd-8868-cfebd22f83d8\experiment 981 8882 998\experiment.log
 \Petrel\HPC\7adb88e8-2b66-4dcd-8868-cfabd22f83d8\experiment 981 8883 898\experiment.log
 \Petrel\HPC\7adb80e8-2b66-4dcd-8868-cfabd22f83d8\experiment 981 8889 808\experiment.log
  Petrel\HPC\7adb80e8-2b66-4dcd-8860-cfabd22f83d8\experiment_981_8888_808\experiment.log
 \Petrel\HPC\7adb89e8-2b66-4dcd-8868-cfabd22f83d8\experiment 981 8887 888\experiment.log
 \Petrel\HPC\7adb89e8-2b66-4dcd-8868-cfabd22f83d8\experiment 981 8886 898\experiment.log
 \Petrel\HPC\7adb86e8-2b66-4dcd-8868-cfabd22f83d8\experiment 981 8885 988\experiment.log
 \Petrel\HPC\7adb86e8-2b66-4dcd-8868-cfabd22f83d8\experiment 981 9882 988\experiment.log
 \Petre1\HPC\7adb86e8-2b66-4dcd-8868-cfabd22f83d8\experiment_981_8884_998\experiment.log
 :\Petrel\HPC\7adb89e8-2b66-4dcd-8868-cfabd22f83d8\experiment_981_9981_998\experiment.log
bardoad: 2000 files, 49.96s, Size: 2.00 MB, Speed: 0.05 MB/s
esy.exe sessions delete propmod-us2-ndrlj --baseURL https://api.delfi.slb.com/engines --appkey XCPocyj47TbAn8weDEDeb2v
htMAE8P --subscriptionID 979a3884ebc3e4143fc7c193fa518a1f
Eesy session finished. Total time (seconds) : 634
```

Two thousand simulations in 634s

Flow simulation

Pros


- Parallel processes
- Results readily available for post-processing
- Quick post-processing of results

Cons

- Jobs take some time to start running
- Slow ensemble creation for Al
- Integration with other solutions were outside the scope

DELFI was shown to be an useful tool, specially for geoscientists

Conclusion

- DELFI offers what is available on-premise and more ("quick wins").
- DELFI is still in development, but it already brought benefits to some of Reservoir's processes.
- Onboarding process is well planned for scaling up.

Thank you

Rodrigo Link Federizzi rodrigolink@petrobras.com.br